Neubauer Jens W, Hauck Nicolas, Männel Max J, Seuss Maximilian, Fery Andreas, Thiele Julian
Leibniz-Institut für Polymerforschung Dresden e.V ., Hohe Str. 6 , 01069 Dresden , Germany.
Chair of Physical Chemistry of Polymeric Materials , Technische Universität Dresden , 01069 Dresden , Germany.
ACS Appl Mater Interfaces. 2019 Jul 24;11(29):26307-26313. doi: 10.1021/acsami.9b04312. Epub 2019 Jul 12.
We introduce a novel concept for mechanosensitive hydrogel microparticles, which translate deformation into changes in fluorescence and can thus function as mechanical probes. The hydrogel particles with controlled polymer network are produced via droplet microfluidics from poly(ethylene glycol) (PEG) precursors. Förster resonance energy transfer donors and acceptors are coupled to the PEG hydrogel network for reporting local deformations as fluorescence shifts. We show that global network deformations, which occur upon drying/rehydration, can be detected via a characteristic fluorescence shift. Combined characterization with confocal laser scanning microscopy and atomic force microscopy (AFM) shows that also local deformation of the particles can be detected. Using AFM, the mechanical properties of the particles can be quantified, which allows linking strain with stress and thus force sensing in a three-dimensional environment. Microfluidic material design allows for precisely varying the size of our hydrogel microparticles as well as their mechanical properties and polymer network structure with regard to the choice of the macromolecular precursors and their functionalization with fluorophores. Thus, concomitant changes in mechanical properties and mechanosensitivity qualify these hydrogel microparticles as an adjustable material platform for force sensing in structural mechanics or cell culturing.
我们引入了一种用于机械敏感水凝胶微粒的新概念,这种微粒可将形变转化为荧光变化,从而能够作为机械探针发挥作用。具有可控聚合物网络的水凝胶微粒是通过微滴微流控技术由聚乙二醇(PEG)前体生成的。福斯特共振能量转移供体和受体与PEG水凝胶网络相连,用于将局部形变报告为荧光位移。我们表明,干燥/再水化时发生的整体网络形变可通过特征性荧光位移检测到。结合共聚焦激光扫描显微镜和原子力显微镜(AFM)进行的表征表明,微粒的局部形变也能够被检测到。使用AFM可以对微粒的力学性能进行量化,这使得在三维环境中能够将应变与应力联系起来,进而实现力传感。微流控材料设计能够精确改变我们水凝胶微粒的尺寸,以及它们的力学性能和聚合物网络结构,这取决于大分子前体的选择及其用荧光团进行的功能化。因此,力学性能和机械敏感性的伴随变化使这些水凝胶微粒成为用于结构力学或细胞培养中力传感的可调节材料平台。