Trittel T, Harth K, Klopp C, Stannarius R
Institute of Experimental Physics, Otto von Guericke University, 39106 Magdeburg, Germany.
Universiteit Twente, Physics of Fluids and Max Planck Center for Complex Fluid Dynamics, P.O. Box 217, 7500 AE Enschede, Netherlands.
Phys Rev Lett. 2019 Jun 14;122(23):234501. doi: 10.1103/PhysRevLett.122.234501.
We demonstrate controlled material transport driven by temperature differences in thin freely suspended smectic films. Films with submicrometer thicknesses and lateral extensions of several millimeters were studied in microgravity during suborbital rocket flights. In-plane temperature differences cause two specific Marangoni effects, directed flow and convection patterns. At low gradients, practically thresholdless, flow transports material with a normal (negative) temperature coefficient of the surface tension dσ/dT<0 from the hot to the cold film edge, it accumulates at the cold film edge. In materials with dσ/dT>0, the reverse transport from the cold to the hot edge is observed. We present a model that describes the effect quantitatively. It predicts that not the temperature gradient in the film plane but the temperature difference between the thermopads is relevant for the effect.
我们展示了由自由悬浮的薄近晶膜中的温度差驱动的可控物质传输。在亚轨道火箭飞行期间,研究了厚度为亚微米级且横向延伸数毫米的薄膜在微重力环境下的情况。面内温度差会引发两种特定的马兰戈尼效应,即定向流动和对流模式。在低梯度下,实际上几乎没有阈值,流动会将具有正常(负)表面张力温度系数dσ/dT < 0的物质从热的薄膜边缘输送到冷的薄膜边缘,物质在冷的薄膜边缘积累。在dσ/dT > 0的材料中,则观察到从冷边缘到热边缘的反向传输。我们提出了一个定量描述该效应的模型。它预测对于该效应而言,与薄膜平面内的温度梯度相关的不是薄膜平面内的温度梯度,而是热垫之间的温度差。