Suppr超能文献

验证国际皮肤撕脱咨询小组分类系统的意大利版本。

Validating the Italian Version of the International Skin Tear Advisory Panel Classification System.

机构信息

In Milan, Italy, Barbara Bassola, MSc, RN, is a PhD Student and Professor, School of Nursing, University of Milan Niguarda Hospital; Paolo Ceci, RN, is a Nurse, Maddalena Grassi Foundation; and Angela Lolli, MSc, RN, is Nursing Director, Niguarda Hospital. Kimberly LeBlanc, PhD, RN, WOCN, CET(D), is Academy Chair, Canadian Association for Enterostomal Therapists, Ottawa, Ontario, Canada. Maura Lusignani, MSc, RN, is Associate Professor, Department of Biomedical Sciences for Health, University of Milan, Italy. Acknowledgments: The authors thank the International Skin Tear Advisory Panel Classification for permission to use their classification system and thank Niguarda Hospital for participating in the study. The authors have disclosed no financial relationships related to this article. Submitted September 11, 2018; accepted in revised form October 12, 2018; published ahead of print July 10, 2019.

出版信息

Adv Skin Wound Care. 2019 Aug;32(8):378-380. doi: 10.1097/01.ASW.0000569124.36663.21.

Abstract

OBJECTIVE

To validate the International Skin Tear Advisory Panel (ISTAP) Classification System in Italian.

METHODS

In collaboration with the ISTAP, the classification system was translated into Italian using a forward-back translation process. To validate the translated system, a convenience sample of 212 health professionals classified 30 photographs of skin tears originally used by ISTAP. The wound images were labeled type 1, 2, or 3 as described by the classification system. The resulting scores were compared with the ISTAP classification, and the reliability of agreement was calculated with Fleiss κ.

RESULTS

Complete data were obtained from 209 healthcare professionals. When the image classifications were compared with the original ISTAP indications, 72.5% of all classifications were correct. Data indicated a moderate level of agreement (Fleiss κ = 0.466, range = 0.41-0.60). Data analysis showed similar agreement levels between nurses (n = 197, Fleiss κ = 0.466) and nonnurses (n = 12, Fleiss κ = 0.46).

CONCLUSIONS

The study validates the Italian version of the ISTAP skin tear classification system. Further studies are necessary to confirm the system's usability in Italian research and clinical settings.

摘要

目的

验证国际皮肤撕脱咨询小组(ISTAP)分类系统的意大利语版本。

方法

与 ISTAP 合作,使用正向-反向翻译过程将分类系统翻译成意大利语。为了验证翻译后的系统,一个便利样本的 212 名健康专业人员对 30 张最初由 ISTAP 使用的皮肤撕脱照片进行了分类。根据分类系统,将伤口图像标记为 1 型、2 型或 3 型。将得到的分数与 ISTAP 分类进行比较,并使用 Fleiss κ 计算一致性的可靠性。

结果

从 209 名医护人员中获得了完整的数据。当图像分类与原始 ISTAP 指示进行比较时,所有分类中有 72.5%是正确的。数据表明存在中度一致性(Fleiss κ = 0.466,范围为 0.41-0.60)。数据分析表明,护士(n = 197,Fleiss κ = 0.466)和非护士(n = 12,Fleiss κ = 0.46)之间的一致性水平相似。

结论

本研究验证了 ISTAP 皮肤撕脱分类系统的意大利语版本。需要进一步的研究来确认该系统在意大利的研究和临床环境中的可用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验