Department of Chemistry and Biochemistry , Florida International University , 11200 SW 8th St., AHC4-233 , Miami , Florida 33199 , United States.
Biomolecular Sciences Institute , Florida International University , 11200 SW 8th St., AHC4-211 , Miami , Florida 33199 , United States.
J Phys Chem B. 2019 Jul 25;123(29):6169-6177. doi: 10.1021/acs.jpcb.9b03777. Epub 2019 Jul 12.
Recently, we proposed a high-throughput screening workflow for the elucidation of agonistic or antagonistic growth hormone-releasing hormone (GHRH) potencies based on structural motif descriptors as a function of the starting solution. In the present work, we revisited the influence of solution and gas-phase GHRH molecular microenvironment using trapped ion mobility-mass spectrometry (TIMS-MS). The effect of the starting solvent composition (10 mM ammonium acetate (NHAc), 50% methanol (MeOH), 50% acetonitrile (MeCN), and 50% acetone (Ac)) and gas-phase modifiers (N, N + MeOH, N + MeCN, and N + Ac) on the conformational states of three GHRH analogues, GHRH (1-29), MR-406, and MIA-602, is described as a function of the trapping time (100-500 ms). Changes in the mobility profiles were observed showing the dependence of the conformational states of GHRH analogues according to the molecular microenvironment in solution, suggesting the presence of solution memory effects on the gas-phase observed structures. Modifying the bath gas composition resulted in smaller mobilities that are correlated with the size and mass of the organic modifier, and more importantly led to substantial changes in relative abundances of the IMS profiles. We attributed the observed changes in the mobility profiles by a clustering/declustering mechanism between the GHRH analogue ions and the gas modifiers, redefining the free energy landscape and leading to other local minima structures. Moreover, inspection of the mobility profiles as a function of the trapping time (100-500 ms) allowed for conformational interconversions toward more stable "gas-phase" structures. These experiments enabled us to outline a more detailed description of the structures and intermediates involved in the biological activity of GHRH, MR-406, and MIA-602.
最近,我们提出了一种基于结构基序描述符的高通量筛选工作流程,用于阐明激动剂或拮抗剂生长激素释放激素(GHRH)效价,作为起始溶液的函数。在本工作中,我们使用离子阱淌度-质谱联用(TIMS-MS)重新研究了溶液和气相 GHRH 分子微环境的影响。起始溶剂组成(10mM 乙酸铵(NHAc)、50%甲醇(MeOH)、50%乙腈(MeCN)和 50%丙酮(Ac))和气相修饰剂(N、N+MeOH、N+MeCN 和 N+Ac)对三种 GHRH 类似物(GHRH(1-29)、MR-406 和 MIA-602)构象状态的影响作为捕获时间(100-500ms)的函数进行了描述。观察到迁移率谱的变化,表明 GHRH 类似物的构象状态取决于溶液中的分子微环境,这表明气相观察到的结构存在溶液记忆效应。改变浴气组成会导致较小的迁移率,这与有机修饰剂的大小和质量有关,更重要的是会导致 IMS 谱图的相对丰度发生实质性变化。我们通过 GHRH 类似物离子与气相修饰剂之间的聚类/解聚类机制来解释迁移率谱的变化,重新定义了自由能景观,并导致其他局部极小结构的形成。此外,根据捕获时间(100-500ms)检查迁移率谱,允许构象相互转化为更稳定的“气相”结构。这些实验使我们能够更详细地描述 GHRH、MR-406 和 MIA-602 的生物活性涉及的结构和中间体。