Suppr超能文献

简单的规则控制着细菌烟酰胺样金属载体的多样性。

Simple rules govern the diversity of bacterial nicotianamine-like metallophores.

机构信息

Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance F-13108, France.

Institut des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France.

出版信息

Biochem J. 2019 Aug 9;476(15):2221-2233. doi: 10.1042/BCJ20190384.

Abstract

In metal-scarce environments, some pathogenic bacteria produce opine-type metallophores mainly to face the host's nutritional immunity. This is the case of staphylopine, pseudopaline and yersinopine, identified in , and , respectively. Depending on the species, these metallophores are synthesized by two (CntLM) or three enzymes (CntKLM), CntM catalyzing the last step of biosynthesis using diverse substrates (pyruvate or α-ketoglutarate), pathway intermediates (xNA or yNA) and cofactors (NADH or NADPH). Here, we explored the substrate specificity of CntM by combining bioinformatic and structural analysis with chemical synthesis and enzymatic studies. We found that NAD(P)H selectivity is mainly due to the amino acid at position 33 ( numbering) which ensures a preferential binding to NADPH when it is an arginine. Moreover, whereas CntM from preferentially uses yNA over xNA, the staphylococcal enzyme is not stereospecific. Most importantly, selectivity toward α-ketoacids is largely governed by a single residue at position 150 of CntM ( numbering): an aspartate at this position ensures selectivity toward pyruvate, whereas an alanine leads to the consumption of both pyruvate and α-ketoglutarate. Modifying this residue in led to a complete reversal of selectivity. Thus, the diversity of opine-type metallophore is governed by the absence/presence of a gene encoding a histidine racemase, and the amino acid residue at position 150 of CntM. These two simple rules predict the production of a fourth metallophore by , which was confirmed and called bacillopaline.

摘要

在金属稀缺的环境中,一些病原菌主要产生类似于生物碱的金属载体来应对宿主的营养免疫。这种情况发生在葡萄球菌生物碱、伪根碱和耶尔森碱中,分别在 、 和 中被鉴定。根据物种的不同,这些金属载体由两种(CntLM)或三种酶(CntKLM)合成,CntM 利用不同的底物(丙酮酸或α-酮戊二酸)、途径中间体(xNA 或 yNA)和辅助因子(NADH 或 NADPH)催化最后一步生物合成。在这里,我们通过结合生物信息学和结构分析以及化学合成和酶学研究来探索 CntM 的底物特异性。我们发现 NAD(P)H 选择性主要归因于位置 33 的氨基酸(编号),当它是精氨酸时,确保了对 NADPH 的优先结合。此外,尽管来自 的 CntM 优先使用 yNA 而不是 xNA,但葡萄球菌酶没有立体特异性。最重要的是,对α-酮酸的选择性主要由 CntM 位置 150 的单个残基(编号)控制:该位置的天冬氨酸确保了对丙酮酸的选择性,而丙氨酸则导致丙酮酸和α-酮戊二酸的消耗。在 中修饰该残基导致选择性完全逆转。因此,类似于生物碱的金属载体的多样性由缺乏/存在编码组氨酸外消旋酶的 基因以及 CntM 位置 150 的氨基酸残基决定。这两个简单的规则预测了 能够产生第四种金属载体,这一预测被 和 证实,并被命名为芽孢碱。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验