Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy.
Ifremer, Univ Brest, CNRS, Laboratoire de Microbiologie des Environnements Extrêmes, F-29280 Plouzané, France.
J Biol Chem. 2019 Aug 30;294(35):13061-13072. doi: 10.1074/jbc.RA119.009493. Epub 2019 Jul 12.
The presence of ribonucleoside monophosphates (rNMPs) in nuclear DNA decreases genome stability. To ensure survival despite rNMP insertions, cells have evolved a complex network of DNA repair mechanisms, in which the ribonucleotide excision repair pathway, initiated by type 2 RNase H (RNase HII/2), plays a major role. We recently demonstrated that eukaryotic RNase H2 cannot repair damage, that is, ribose monophosphate abasic (both apurinic or apyrimidinic) site (rAP) or oxidized rNMP embedded in DNA. Currently, it remains unclear why RNase H2 is unable to repair these modified nucleic acids having either only a sugar moiety or an oxidized base. Here, we compared the endoribonuclease specificity of the RNase HII enzymes from the archaeon and the bacterium , examining their ability to process damaged rNMPs embedded in DNA We found that RNase HII cleaves both rAP and oxidized rNMP sites. In contrast, like the eukaryotic RNase H2, RNase HII did not display any rAP or oxidized rNMP incision activities, even though it recognized them. Notably, the archaeal enzyme was also inactive on a mismatched rNMP, whereas the enzyme displayed a strong preference for the mispaired rNMP over the paired rNMP in DNA. On the basis of our biochemical findings and also structural modeling analyses of RNase HII/2 proteins from organisms belonging to all three domains of life, we propose that RNases HII/2's dual roles in ribonucleotide excision repair and RNA/DNA hydrolysis result in limited acceptance of modified rNMPs embedded in DNA.
核 DNA 中核糖核苷酸单磷酸 (rNMP) 的存在会降低基因组的稳定性。为了确保在 rNMP 插入的情况下能够存活,细胞已经进化出了一套复杂的 DNA 修复机制,其中由 2 型核糖核酸酶 H (RNase HII/2) 启动的核糖核苷酸切除修复途径发挥着主要作用。我们最近证明,真核生物的 RNase H2 无法修复核糖核苷酸单磷酸无碱基 (嘌呤或嘧啶) 位点 (rAP) 或嵌入 DNA 中的氧化 rNMP 等损伤。目前,尚不清楚为什么 RNase H2 无法修复这些仅有糖基部分或氧化碱基的修饰核酸。在这里,我们比较了古菌和细菌的 RNase HII 酶的内切核酸酶特异性,研究了它们在处理嵌入 DNA 中的受损 rNMP 的能力。我们发现,RNase HII 可以切割 rAP 和氧化 rNMP 位点。相比之下,与真核生物的 RNase H2 一样,RNase HII 即使识别出这些位点,也没有显示出任何 rAP 或氧化 rNMP 的切割活性。值得注意的是,古菌酶对错配的 rNMP 也没有活性,而 酶对 DNA 中错配的 rNMP 比对配对的 rNMP 具有更强的偏好。基于我们的生化发现,以及对来自所有三个生命领域的生物体的 RNase HII/2 蛋白的结构建模分析,我们提出 RNase HII/2 在核糖核苷酸切除修复和 RNA/DNA 水解中的双重作用导致其对嵌入 DNA 中的修饰 rNMP 的接受度有限。