Suppr超能文献

典型硬木在惰性和含氧气氛中的比较热解特性和动力学。

Comparative Pyrolysis Characteristics and Kinetics of Typical Hardwood in Inert and Oxygenous Atmosphere.

机构信息

School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People's Republic of China.

出版信息

Appl Biochem Biotechnol. 2020 Jan;190(1):90-112. doi: 10.1007/s12010-019-03089-9. Epub 2019 Jul 13.

Abstract

Combustion (pyrolysis with oxygen) and pyrolysis without oxygen are two potential methods to convert wood into biofuels or biochemicals. To evaluate which is preponderant to convert wood into biofuels or biochemicals and provide guidance for optimization of product yield, the pyrolysis characteristics and kinetics of typical hardwood (black walnut) are comparatively investigated in nitrogen and air employing thermogravimetric analysis (TGA) and differential scanning calorimeter (DSC). Two model-free methods including Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) method are applied to obtain the kinetic parameters, and a model-fitting method called Coats-Redfern (CR) method is employed to estimate the reaction mechanism. The black walnut pyrolysis in nitrogen may be divided into two stages with the threshold of conversion rate α = 0.4, but that in air may be separated into three stages with the thresholds of α = 0.25 and 0.7. The reaction mechanism for pyrolysis in nitrogen may be assumed random nucleation and its subsequent growth, but that in air may be assumed random nucleation and its subsequent growth followed by chemical reaction. The average activation energy and natural logarithm of pre-exponential factor for the whole pyrolysis process in nitrogen and air are 211.59 and 187.73 kJ/mol and 32.33 and 28.36 min, respectively.

摘要

燃烧(有氧热解)和无氧热解是将木材转化为生物燃料或生物化学物质的两种潜在方法。为了评估哪种方法更有利于将木材转化为生物燃料或生物化学物质,并为优化产品收率提供指导,采用热重分析(TGA)和差示扫描量热法(DSC)在氮气和空气中比较研究了典型硬木(黑胡桃)的热解特性和动力学。采用无模型法(Flynn-Wall-Ozawa(FWO)和 Kissinger-Akahira-Sunose(KAS)法)和模型拟合法(Coats-Redfern(CR)法)获得动力学参数,并采用模型拟合法(Coats-Redfern(CR)法)估算反应机制。在氮气中,黑胡桃的热解可能分为两个阶段,转化率α=0.4 为阈值,但在空气中,热解可能分为三个阶段,α=0.25 和 0.7 为阈值。氮气中热解的反应机制可以假定为随机成核及其随后的生长,但空气中的热解反应机制可以假定为随机成核及其随后的生长,然后是化学反应。氮气和空气中整个热解过程的平均活化能和自然对数前因子分别为 211.59 和 187.73 kJ/mol 和 32.33 和 28.36 min。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验