Finzel K
Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany.
J Chem Phys. 2019 Jul 14;151(2):024109. doi: 10.1063/1.5099217.
An orbital-free implementation of the original Hohenberg-Kohn theorems is presented, making use of the scaling properties from a fictitious Kohn-Sham system, but without reintroducing orbitals. The first order fragment approach does not contain data or parameters that are fitted to the final outcome of the molecular orbital-free calculation and thus represents a parameter-free implementation of orbital-free density functional theory, although it requires the precalculation of atomic data. Consequently, the proposed method is not limited to a specific type of molecule or chemical bonding. The different approximation levels arise from including (first order) or neglecting (zeroth order) the dependency between the potential and the electron density, which in the bifunctional approach are formally treated as independent variables.
本文提出了原始 Hohenberg-Kohn 定理的无轨道实现方法,该方法利用了虚拟 Kohn-Sham 系统的标度性质,但无需重新引入轨道。一阶片段方法不包含拟合到无分子轨道计算最终结果的数据或参数,因此代表了无轨道密度泛函理论的无参数实现,尽管它需要预先计算原子数据。因此,所提出的方法不限于特定类型的分子或化学键。不同的近似水平源于包含(一阶)或忽略(零阶)势与电子密度之间的相关性,在双功能方法中,它们被形式上视为独立变量。