Diuba Artem V, Samigullin Dmitry V, Kaszas Attila, Zonfrillo Francesca, Malkov Anton, Petukhova Elena, Casini Antonio, Arosio Daniele, Esclapez Monique, Gross Cornelius T, Bregestovski Piotr
Aix-Marseille University, INSERM, INS, Institut of System Neurosciences, 13005 Marseille, France; A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia.
Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111, Kazan, Russia; Department of Radiophotonics and microwave technologies, Kazan National Research Technical University named after A.N.Tupolev, 420111, Kazan, Russia; Open Laboratory of Neuropharmacology, Kazan Federal University,420111, Kazan, Russia.
Neuroscience. 2020 Jul 15;439:181-194. doi: 10.1016/j.neuroscience.2019.07.010. Epub 2019 Jul 11.
Genetically encoded biosensors are widely used in cell biology for the non-invasive imaging of concentrations of ions or the activity of enzymes, to evaluate the distribution of small molecules, proteins and organelles, and to image protein interactions in living cells. These fluorescent molecules can be used either by transient expression in cultured cells or in entire organisms or through stable expression by producing transgenic animals characterized by genetically encoded and heritable biosensors. Using the mouse Thy1 mini-promoter, we generated a line of transgenic mice expressing a genetically encoded sensor for the simultaneous measurements of intracellular Cl and pH. This construct, called ClopHensor, consists of a H- and Cl-sensitive variant of the enhanced green fluorescent protein (EGFP) fused with a red fluorescent protein (DsRedm). Stimulation of hippocampal Schaffer collaterals proved that the sensor is functionally active. To reveal the expression pattern of ClopHensor across the brain of Thy1::ClopHensor mice, we obtained transparent brain samples using the CLARITY method and imaged them with confocal and light-sheet microscopy. We then developed a semi-quantitative approach to identify brain structures with high intrinsic sensor fluorescence. This approach allowed us to assess cell morphology and track axonal projection, as well as to confirm EGFP and DsRedm fluorescence colocalization. This analysis also provides a map of the brain areas suitable for non-invasive monitoring of intracellular Cl/pH in normal and pathological conditions. This article is part of a Special Issue entitled: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
基因编码生物传感器在细胞生物学中被广泛用于对离子浓度或酶活性进行非侵入性成像,以评估小分子、蛋白质和细胞器的分布,并对活细胞中的蛋白质相互作用进行成像。这些荧光分子既可以通过在培养细胞或整个生物体中瞬时表达来使用,也可以通过产生以基因编码且可遗传的生物传感器为特征的转基因动物来实现稳定表达。利用小鼠Thy1微型启动子,我们培育了一系列转基因小鼠,它们表达一种用于同时测量细胞内氯离子和pH值的基因编码传感器。这种构建体称为ClopHensor,由增强型绿色荧光蛋白(EGFP)的H和Cl敏感变体与红色荧光蛋白(DsRedm)融合而成。对海马体Schaffer侧支的刺激证明该传感器具有功能活性。为了揭示ClopHensor在Thy1::ClopHensor小鼠大脑中的表达模式,我们使用CLARITY方法获得了透明脑样本,并通过共聚焦显微镜和光片显微镜对其进行成像。然后,我们开发了一种半定量方法来识别具有高内在传感器荧光的脑结构。这种方法使我们能够评估细胞形态并追踪轴突投射,以及确认EGFP和DsRedm荧光的共定位。该分析还提供了一张脑区图谱,适用于在正常和病理条件下对细胞内氯离子/pH值进行非侵入性监测。本文是名为:纪念里卡多·米莱迪——二十世纪至二十一世纪杰出神经科学家的特刊的一部分。