Barnhart-Dailey Meghan C, Ye Dongmei, Hayes Dulce C, Maes Danae, Simoes Casey T, Appelhans Leah, Carroll-Portillo Amanda, Kent Michael S, Timlin Jerilyn A
1Department of Bioenergy and Defense Technologies, Sandia National Laboratories, Albuquerque, NM 87123 USA.
3Department of Nanobiology, Sandia National Laboratories, Albuquerque, NM 87123 USA.
Biotechnol Biofuels. 2019 Jul 3;12:175. doi: 10.1186/s13068-019-1494-8. eCollection 2019.
Valorization of lignin has the potential to significantly improve the economics of lignocellulosic biorefineries. However, its complex structure makes conversion to useful products elusive. One promising approach is depolymerization of lignin and subsequent bioconversion of breakdown products into value-added compounds. Optimizing transport of these depolymerization products into one or more organism(s) for biological conversion is important to maximize carbon utilization and minimize toxicity. Current methods assess internalization of depolymerization products indirectly-for example, growth on, or toxicity of, a substrate. Furthermore, no method has been shown to provide visualization of depolymerization products in individual cells.
We applied mass spectrometry to provide direct measurements of relative internalized concentrations of several lignin depolymerization compounds and single-cell microscopy methods to visualize cell-to-cell differences in internalized amounts of two lignin depolymerization compounds. We characterized internalization of 4-hydroxybenzoic acid, vanillic acid, -coumaric acid, syringic acid, and the model dimer guaiacylglycerol-beta-guaiacyl ether (GGE) in the lignolytic organisms and and in the non-lignolytic but genetically tractable organisms and . The results show varying degrees of internalization in all organisms for all the tested compounds, including the model dimer, GGE. internalizes all compounds in non-lignolytic and lignolytic conditions at comparable levels, indicating that the transporters for these compounds are not specific to the lignolytic secondary metabolic system. Single-cell microscopy shows that internalization of vanillic acid and 4-hydroxybenzoic acid analogs varies greatly among individual fungal and bacterial cells in a given population. Glucose starvation and chemical inhibition of ATP hydrolysis during internalization significantly reduced the internalized amount of vanillic acid in bacteria.
Mass spectrometry and single-cell microscopy methods were developed to establish a toolset for providing direct measurement and visualization of relative internal concentrations of mono- and di-aryl compounds in microbes. Utilizing these methods, we observed broad variation in intracellular concentration between organisms and within populations and this may have important consequences for the efficiency and productivity of an industrial process for bioconversion. Subsequent application of this toolset will be useful in identifying and characterizing specific transporters for lignin-derived mono- and di-aryl compounds.
木质素的增值有潜力显著改善木质纤维素生物精炼厂的经济效益。然而,其复杂的结构使得转化为有用产品难以实现。一种有前景的方法是木质素解聚,随后将分解产物生物转化为增值化合物。优化这些解聚产物向一种或多种生物体的转运以进行生物转化对于最大化碳利用和最小化毒性很重要。当前方法间接评估解聚产物的内化情况,例如,在底物上生长或底物的毒性。此外,尚无方法能显示单个细胞中解聚产物的可视化情况。
我们应用质谱法直接测量几种木质素解聚化合物的相对内化浓度,并使用单细胞显微镜方法可视化两种木质素解聚化合物内化量的细胞间差异。我们表征了4-羟基苯甲酸、香草酸、对香豆酸、丁香酸以及模型二聚体愈创木基甘油-β-愈创木基醚(GGE)在木质素分解生物体 和 以及非木质素分解但遗传上易于处理的生物体 和 中的内化情况。结果表明,对于所有测试化合物,包括模型二聚体GGE,所有生物体均呈现出不同程度的内化。 在非木质素分解和木质素分解条件下以相当的水平内化所有化合物,表明这些化合物的转运蛋白并非特定于木质素分解次生代谢系统。单细胞显微镜显示,在给定群体中,香草酸和4-羟基苯甲酸类似物在单个真菌和细菌细胞中的内化情况差异很大。内化过程中葡萄糖饥饿和ATP水解的化学抑制显著降低了细菌中香草酸的内化量。
开发了质谱法和单细胞显微镜方法,以建立一套工具,用于直接测量和可视化微生物中单芳基和二芳基化合物的相对内部浓度。利用这些方法,我们观察到生物体之间以及群体内部细胞内浓度存在广泛差异,这可能对生物转化工业过程的效率和生产力产生重要影响。该工具集的后续应用将有助于识别和表征木质素衍生的单芳基和二芳基化合物的特定转运蛋白。