Green Eric M, van Mourik Reinier, Wolfus Charles, Heitner Stephen B, Dur Onur, Semigran Marc J
MyoKardia, Inc., South San Francisco, CA USA.
Wavelet Health, Mountain View, CA USA.
NPJ Digit Med. 2019 Jun 24;2:57. doi: 10.1038/s41746-019-0130-0. eCollection 2019.
Hypertrophic cardiomyopathy (HCM) is a heritable disease of heart muscle that increases the risk for heart failure, stroke, and sudden death, even in asymptomatic patients. With only 10-20% of affected people currently diagnosed, there is an unmet need for an effective screening tool outside of the clinical setting. Photoplethysmography uses a noninvasive optical sensor incorporated in commercial smart watches to detect blood volume changes at the skin surface. In this study, we obtained photoplethysmography recordings and echocardiograms from 19 HCM patients with left ventricular outflow tract obstruction (oHCM) and a control cohort of 64 healthy volunteers. Automated analysis showed a significant difference in oHCM patients for 38/42 morphometric pulse wave features, including measures of systolic ejection time, rate of rise during systole, and respiratory variation. We developed a machine learning classifier that achieved a C-statistic for oHCM detection of 0.99 (95% CI: 0.99-1.0). With further development, this approach could provide a noninvasive and widely available screening tool for obstructive HCM.
肥厚型心肌病(HCM)是一种遗传性心肌疾病,即使在无症状患者中,也会增加心力衰竭、中风和猝死的风险。目前只有10%-20%的患者被诊断出来,因此在临床环境之外,对有效的筛查工具仍有未满足的需求。光电容积脉搏波描记法使用商业智能手表中内置的非侵入式光学传感器来检测皮肤表面的血容量变化。在本研究中,我们从19名患有左心室流出道梗阻的肥厚型心肌病患者(oHCM)和64名健康志愿者的对照队列中获取了光电容积脉搏波描记图记录和超声心动图。自动分析显示,oHCM患者在42个形态学脉搏波特征中的38个存在显著差异,包括收缩期射血时间、收缩期上升速率和呼吸变化的测量。我们开发了一种机器学习分类器,用于检测oHCM的C统计量达到了0.99(95%CI:0.99-1.0)。随着进一步发展,这种方法可以为梗阻性肥厚型心肌病提供一种非侵入性且广泛可用的筛查工具。