Suppr超能文献

构象探测揭示人 rRNA 主要在溶液中未折叠。

SHAPE Probing Reveals Human rRNAs Are Largely Unfolded in Solution.

机构信息

Department of Chemistry , The University of North Carolina , Chapel Hill , North Carolina 27599-3290 , United States.

出版信息

Biochemistry. 2019 Aug 6;58(31):3377-3385. doi: 10.1021/acs.biochem.9b00076. Epub 2019 Jul 26.

Abstract

Chemical probing experiments, coupled with empirically determined free energy change relationships, can enable accurate modeling of the secondary structures of diverse and complex RNAs. A current frontier lies in modeling large and structurally heterogeneous transcripts, including complex eukaryotic RNAs. To validate and improve on experimentally driven approaches for modeling large transcripts, we obtained high-quality SHAPE data for the protein-free human 18S and 28S ribosomal RNAs (rRNAs). To our surprise, SHAPE-directed structure models for the human rRNAs poorly matched accepted structures. Analysis of predicted rRNA structures based on low-SHAPE and low-entropy (lowSS) metrics revealed that, whereas ∼75% of rRNA sequences form well-determined lowSS secondary structure, only ∼40% of the human rRNAs do. Critically, regions of the human rRNAs that specifically fold into well-determined lowSS structures were modeled to high accuracy using SHAPE data. This work reveals that eukaryotic rRNAs are more unfolded than are those of prokaryotic rRNAs and indeed are largely unfolded overall, likely reflecting increased protein dependence for eukaryotic ribosome structure. In addition, those regions and substructures that are well-determined can be identified and successfully modeled by SHAPE-directed folding.

摘要

化学探测实验,结合经验确定的自由能变化关系,可以实现对不同和复杂 RNA 的二级结构的准确建模。当前的前沿领域在于对大型和结构异质的转录物进行建模,包括复杂的真核 RNA。为了验证和改进基于实验驱动的建模大型转录物的方法,我们获得了无蛋白质的人 18S 和 28S 核糖体 RNA(rRNA)的高质量 SHAPE 数据。令我们惊讶的是,SHAPE 指导的人 rRNA 结构模型与公认的结构模型不匹配。基于低 SHAPE 和低熵(lowSS)指标的预测 rRNA 结构分析表明,虽然约 75%的 rRNA 序列形成了确定的低 SS 二级结构,但只有约 40%的人 rRNA 是这样。至关重要的是,使用 SHAPE 数据对人 rRNA 中具体折叠成确定的低 SS 结构的区域进行了高精度建模。这项工作表明,真核 rRNA 比原核 rRNA 更展开,实际上总体上大部分是展开的,这可能反映了真核核糖体结构对蛋白质的依赖增加。此外,那些确定的区域和亚结构可以通过 SHAPE 指导的折叠来识别和成功建模。

相似文献

1
SHAPE Probing Reveals Human rRNAs Are Largely Unfolded in Solution.
Biochemistry. 2019 Aug 6;58(31):3377-3385. doi: 10.1021/acs.biochem.9b00076. Epub 2019 Jul 26.
4
Probing the structure of mouse Ehrlich ascites cell 5.8S, 18S and 28S ribosomal RNA in situ.
Nucleic Acids Res. 1994 Apr 25;22(8):1374-82. doi: 10.1093/nar/22.8.1374.
5
Model-Free RNA Sequence and Structure Alignment Informed by SHAPE Probing Reveals a Conserved Alternate Secondary Structure for 16S rRNA.
PLoS Comput Biol. 2015 May 20;11(5):e1004126. doi: 10.1371/journal.pcbi.1004126. eCollection 2015 May.
6
Identifying small RNAs derived from maternal- and somatic-type rRNAs in zebrafish development.
Genome. 2018 May;61(5):371-378. doi: 10.1139/gen-2017-0202. Epub 2018 Feb 9.
7
The Expansion Segments of Human 28S rRNA Match MicroRNAs Much Above 18S rRNA or Core Segments.
Microrna. 2018;7(2):128-137. doi: 10.2174/2211536607666180328120018.
9
Expression of distinct maternal and somatic 5.8S, 18S, and 28S rRNA types during zebrafish development.
RNA. 2017 Aug;23(8):1188-1199. doi: 10.1261/rna.061515.117. Epub 2017 May 12.

引用本文的文献

2
Mutation signature filtering enables high-fidelity RNA structure probing at all four nucleobases with DMS.
Nucleic Acids Res. 2023 Sep 8;51(16):8744-8757. doi: 10.1093/nar/gkad522.
3
Mutation signature filtering enables high-fidelity RNA structure probing at all four nucleobases with DMS.
bioRxiv. 2023 Apr 11:2023.04.10.536308. doi: 10.1101/2023.04.10.536308.
4
Structure-first identification of RNA elements that regulate dengue virus genome architecture and replication.
Proc Natl Acad Sci U S A. 2023 Apr 11;120(15):e2217053120. doi: 10.1073/pnas.2217053120. Epub 2023 Apr 3.
5
Global 5'-UTR RNA structure regulates translation of a SERPINA1 mRNA.
Nucleic Acids Res. 2022 Sep 23;50(17):9689-9704. doi: 10.1093/nar/gkac739.
6
SHAPE Directed Discovery of New Functions in Large RNAs.
Acc Chem Res. 2021 May 18;54(10):2502-2517. doi: 10.1021/acs.accounts.1c00118. Epub 2021 May 7.
7
In vivo structure of the Ty1 retrotransposon RNA genome.
Nucleic Acids Res. 2021 Mar 18;49(5):2878-2893. doi: 10.1093/nar/gkab090.

本文引用的文献

1
Guidelines for SHAPE Reagent Choice and Detection Strategy for RNA Structure Probing Studies.
Biochemistry. 2019 Jun 11;58(23):2655-2664. doi: 10.1021/acs.biochem.8b01218. Epub 2019 May 30.
2
Pervasive tertiary structure in the dengue virus RNA genome.
Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):11513-11518. doi: 10.1073/pnas.1716689115. Epub 2018 Oct 19.
3
Messenger RNA Structure Regulates Translation Initiation: A Mechanism Exploited from Bacteria to Humans.
Biochemistry. 2018 Jul 3;57(26):3537-3539. doi: 10.1021/acs.biochem.8b00395. Epub 2018 Jun 12.
4
Pervasive Regulatory Functions of mRNA Structure Revealed by High-Resolution SHAPE Probing.
Cell. 2018 Mar 22;173(1):181-195.e18. doi: 10.1016/j.cell.2018.02.034. Epub 2018 Mar 15.
5
Accurate detection of chemical modifications in RNA by mutational profiling (MaP) with ShapeMapper 2.
RNA. 2018 Feb;24(2):143-148. doi: 10.1261/rna.061945.117. Epub 2017 Nov 7.
6
Riboswitch diversity and distribution.
RNA. 2017 Jul;23(7):995-1011. doi: 10.1261/rna.061234.117. Epub 2017 Apr 10.
7
Recurring RNA structural motifs underlie the mechanics of L1 stalk movement.
Nat Commun. 2017 Feb 8;8:14285. doi: 10.1038/ncomms14285.
8
RNA modifications and structures cooperate to guide RNA-protein interactions.
Nat Rev Mol Cell Biol. 2017 Mar;18(3):202-210. doi: 10.1038/nrm.2016.163. Epub 2017 Feb 1.
9
Large-Scale Movements of IF3 and tRNA during Bacterial Translation Initiation.
Cell. 2016 Sep 22;167(1):133-144.e13. doi: 10.1016/j.cell.2016.08.074.
10
SHAPE reveals transcript-wide interactions, complex structural domains, and protein interactions across the Xist lncRNA in living cells.
Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10322-7. doi: 10.1073/pnas.1600008113. Epub 2016 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验