Suppr超能文献

APEX2 的不含半胱氨酸的单一突变体 C32S 是一种高度表达和活性的融合标签,适用于邻近标记应用。

The cysteine-free single mutant C32S of APEX2 is a highly expressed and active fusion tag for proximity labeling applications.

机构信息

Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.

Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan.

出版信息

Protein Sci. 2019 Sep;28(9):1703-1712. doi: 10.1002/pro.3685. Epub 2019 Aug 6.

Abstract

APEX2, an engineered ascorbate peroxidase for high activity, is a powerful tool for proximity labeling applications. Owing to its lack of disulfides and the calcium-independent activity, APEX2 can be applied intracellularly for targeted electron microscopy imaging or interactome mapping when fusing to a protein of interest. However, APEX2 fusion is often deleterious to the protein expression, which seriously hampers its wide utility. This problem is especially compelling when APEX2 is fused to structurally delicate proteins, such as multi-pass membrane proteins. In this study, we found that a cysteine-free single mutant C32S of APEX2 dramatically improved the expression of fusion proteins in mammalian cells without compromising the enzyme activity. We fused APEX2 and APEX2 to four multi-transmembrane solute carriers (SLCs), SLC1A5, SLC6A5, SLC6A14, and SLC7A1, and compared their expressions in stable HEK293T cell lines. Except the SLC6A5 fusions expressing at decent levels for both APEX2 (70%) and APEX2 (73%), other three SLC proteins showed significantly better expression when fusing to APEX2 (69 ± 13%) than APEX2 (29 ± 15%). Immunofluorescence and western blot experiments showed correct plasma membrane localization and strong proximity labeling efficiency in all four SLC-APEX2 cells. Enzyme kinetic experiments revealed that APEX2 and APEX2 have comparable activities in terms of oxidizing guaiacol. Overall, we believe APEX2 is a superior fusion tag to APEX2 for proximity labeling applications, especially when mismatched disulfide bonding or poor expression is a concern.

摘要

APEX2 是一种经过工程改造的抗坏血酸过氧化物酶,具有高活性,是用于邻近标记应用的强大工具。由于缺乏二硫键和钙离子非依赖性活性,APEX2 可以在细胞内应用于靶向电子显微镜成像或与感兴趣的蛋白质融合进行互作组图谱绘制。然而,APEX2 融合通常对蛋白质表达有害,严重限制了其广泛应用。当 APEX2 与结构脆弱的蛋白质(如多跨膜蛋白)融合时,这个问题尤其突出。在这项研究中,我们发现 APEX2 的无半胱氨酸单突变 C32S 显著改善了融合蛋白在哺乳动物细胞中的表达,而不影响酶活性。我们融合了 APEX2 和 APEX2 到四个多跨膜溶质载体(SLC),SLC1A5、SLC6A5、SLC6A14 和 SLC7A1,并比较了它们在稳定的 HEK293T 细胞系中的表达。除了 SLC6A5 融合蛋白在 APEX2(70%)和 APEX2(73%)表达水平都相当不错之外,其他三个 SLC 蛋白与 APEX2(69±13%)融合时的表达明显优于 APEX2(29±15%)。免疫荧光和 Western blot 实验表明,所有四个 SLC-APEX2 细胞均具有正确的质膜定位和强大的邻近标记效率。酶动力学实验表明,APEX2 和 APEX2 在氧化愈创木酚方面具有相当的活性。总体而言,我们认为 APEX2 是一种优于 APEX2 的邻近标记应用融合标签,尤其是在存在不匹配的二硫键键合或表达不良的情况下。

相似文献

2
Optimized APEX2 peroxidase-mediated proximity labeling in fast- and slow-growing mycobacteria.
Methods Enzymol. 2022;664:267-289. doi: 10.1016/bs.mie.2021.11.021. Epub 2021 Dec 30.
3
Expanding APEX2 Substrates for Proximity-Dependent Labeling of Nucleic Acids and Proteins in Living Cells.
Angew Chem Int Ed Engl. 2019 Aug 19;58(34):11763-11767. doi: 10.1002/anie.201905949. Epub 2019 Jul 26.
5
RNA-protein interaction mapping via MS2- or Cas13-based APEX targeting.
Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22068-22079. doi: 10.1073/pnas.2006617117. Epub 2020 Aug 24.
7
An APEX2 proximity ligation method for mapping interactions with the nuclear lamina.
J Cell Biol. 2021 Jan 4;220(1). doi: 10.1083/jcb.202002129.
8
APEX2-mediated RAB proximity labeling identifies a role for RAB21 in clathrin-independent cargo sorting.
EMBO Rep. 2019 Feb;20(2). doi: 10.15252/embr.201847192. Epub 2019 Jan 3.
9
APEX2-based Proximity Labeling of Atox1 Identifies CRIP2 as a Nuclear Copper-binding Protein that Regulates Autophagy Activation.
Angew Chem Int Ed Engl. 2021 Nov 22;60(48):25346-25355. doi: 10.1002/anie.202108961. Epub 2021 Oct 27.
10
Subcellular proteomics of dopamine neurons in the mouse brain.
Elife. 2022 Jan 31;11:e70921. doi: 10.7554/eLife.70921.

引用本文的文献

1
Next-Generation Protein-Ligand Interaction Networks: APEX as a Powerful Technology.
Proteomes. 2025 Jun 23;13(3):26. doi: 10.3390/proteomes13030026.
2
Proximity Protein Labeling In With Engineered Ascorbic Acid Peroxidase 2.
J Biol Methods. 2023 Mar 16;10:e99010002. doi: 10.14440/jbm.2023.396. eCollection 2023.
3
Proximity Labeling in Plants.
Annu Rev Plant Biol. 2023 May 22;74:285-312. doi: 10.1146/annurev-arplant-070522-052132. Epub 2023 Feb 28.
4
Proximity labeling for investigating protein-protein interactions.
Methods Cell Biol. 2022;169:237-266. doi: 10.1016/bs.mcb.2021.12.006. Epub 2022 Jan 20.
5
Advances in enzyme-mediated proximity labeling and its potential for plant research.
Plant Physiol. 2022 Feb 4;188(2):756-768. doi: 10.1093/plphys/kiab479.
6
Recent progress in mass spectrometry-based strategies for elucidating protein-protein interactions.
Cell Mol Life Sci. 2021 Jul;78(13):5325-5339. doi: 10.1007/s00018-021-03856-0. Epub 2021 May 27.
7
Proximity-dependent labeling methods for proteomic profiling in living cells: An update.
Wiley Interdiscip Rev Dev Biol. 2021 Jan;10(1):e392. doi: 10.1002/wdev.392. Epub 2020 Sep 10.

本文引用的文献

2
Proximity-CLIP provides a snapshot of protein-occupied RNA elements in subcellular compartments.
Nat Methods. 2018 Dec;15(12):1074-1082. doi: 10.1038/s41592-018-0220-y. Epub 2018 Nov 26.
3
Quintuple labeling in the electron microscope with genetically encoded enhanced horseradish peroxidase.
PLoS One. 2018 Jul 16;13(7):e0200693. doi: 10.1371/journal.pone.0200693. eCollection 2018.
4
The ciliary membrane-associated proteome reveals actin-binding proteins as key components of cilia.
EMBO Rep. 2017 Sep;18(9):1521-1535. doi: 10.15252/embr.201643846. Epub 2017 Jul 14.
6
Multidimensional Tracking of GPCR Signaling via Peroxidase-Catalyzed Proximity Labeling.
Cell. 2017 Apr 6;169(2):338-349.e11. doi: 10.1016/j.cell.2017.03.028.
7
Proximity-dependent labeling methods for proteomic profiling in living cells.
Wiley Interdiscip Rev Dev Biol. 2017 Jul;6(4). doi: 10.1002/wdev.272. Epub 2017 Apr 7.
8
Proximity Biotinylation as a Method for Mapping Proteins Associated with mtDNA in Living Cells.
Cell Chem Biol. 2017 Mar 16;24(3):404-414. doi: 10.1016/j.chembiol.2017.02.002. Epub 2017 Feb 23.
9
Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2.
Nat Protoc. 2016 Mar;11(3):456-75. doi: 10.1038/nprot.2016.018. Epub 2016 Feb 11.
10
A Call for Systematic Research on Solute Carriers.
Cell. 2015 Jul 30;162(3):478-87. doi: 10.1016/j.cell.2015.07.022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验