Suppr超能文献

活细胞蛋白质组学分析中的邻近依赖性标记方法:最新进展。

Proximity-dependent labeling methods for proteomic profiling in living cells: An update.

机构信息

Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA.

Howard Hughes Medical Institute, Boston, Massachusetts, USA.

出版信息

Wiley Interdiscip Rev Dev Biol. 2021 Jan;10(1):e392. doi: 10.1002/wdev.392. Epub 2020 Sep 10.

Abstract

Characterizing the proteome composition of organelles and subcellular regions of living cells can facilitate the understanding of cellular organization as well as protein interactome networks. Proximity labeling-based methods coupled with mass spectrometry (MS) offer a high-throughput approach for systematic analysis of spatially restricted proteomes. Proximity labeling utilizes enzymes that generate reactive radicals to covalently tag neighboring proteins. The tagged endogenous proteins can then be isolated for further analysis by MS. To analyze protein-protein interactions or identify components that localize to discrete subcellular compartments, spatial expression is achieved by fusing the enzyme to specific proteins or signal peptides that target to particular subcellular regions. Although these technologies have only been introduced recently, they have already provided deep insights into a wide range of biological processes. Here, we provide an updated description and comparison of proximity labeling methods, as well as their applications and improvements. As each method has its own unique features, the goal of this review is to describe how different proximity labeling methods can be used to answer different biological questions. This article is categorized under: Technologies > Analysis of Proteins.

摘要

对活细胞细胞器和亚细胞区域的蛋白质组组成进行特征分析,可以促进对细胞组织以及蛋白质互作网络的理解。基于邻近标记与质谱(MS)联用的方法为系统分析空间受限的蛋白质组提供了一种高通量方法。邻近标记利用产生反应性自由基的酶来共价标记邻近的蛋白质。然后可以通过 MS 对标记的内源性蛋白质进行进一步分析。为了分析蛋白质-蛋白质相互作用或鉴定定位于离散亚细胞隔室的成分,可以通过将酶融合到特定蛋白质或靶向特定亚细胞区域的信号肽来实现空间表达。尽管这些技术最近才被引入,但它们已经为广泛的生物学过程提供了深刻的见解。在这里,我们提供了邻近标记方法的最新描述和比较,以及它们的应用和改进。由于每种方法都有其独特的特点,因此本文的目的是描述如何使用不同的邻近标记方法来回答不同的生物学问题。本文属于以下类别:技术 > 蛋白质分析

相似文献

1
Proximity-dependent labeling methods for proteomic profiling in living cells: An update.
Wiley Interdiscip Rev Dev Biol. 2021 Jan;10(1):e392. doi: 10.1002/wdev.392. Epub 2020 Sep 10.
2
Proximity-dependent labeling methods for proteomic profiling in living cells.
Wiley Interdiscip Rev Dev Biol. 2017 Jul;6(4). doi: 10.1002/wdev.272. Epub 2017 Apr 7.
3
Filling the Void: Proximity-Based Labeling of Proteins in Living Cells.
Trends Cell Biol. 2016 Nov;26(11):804-817. doi: 10.1016/j.tcb.2016.09.004. Epub 2016 Sep 22.
5
Proximity labeling expansion microscopy (PL-ExM) evaluates interactome labeling techniques.
J Mater Chem B. 2024 Aug 28;12(34):8335-8348. doi: 10.1039/d4tb00516c.
6
Proximity labeling approaches to study protein complexes during virus infection.
Adv Virus Res. 2021;109:63-104. doi: 10.1016/bs.aivir.2021.02.001. Epub 2021 Apr 16.
7
Proteomic mapping in live Drosophila tissues using an engineered ascorbate peroxidase.
Proc Natl Acad Sci U S A. 2015 Sep 29;112(39):12093-8. doi: 10.1073/pnas.1515623112. Epub 2015 Sep 11.
8
Intracellular proteome compartmentalization: a biotin ligase-based proximity labeling approach.
Cell Biosci. 2021 Aug 23;11(1):165. doi: 10.1186/s13578-021-00666-6.
9
Protein Neighbors and Proximity Proteomics.
Mol Cell Proteomics. 2015 Nov;14(11):2848-56. doi: 10.1074/mcp.R115.052902. Epub 2015 Sep 8.
10
Proximity Labeling of Interacting Proteins: Application of BioID as a Discovery Tool.
Proteomics. 2017 Oct;17(20). doi: 10.1002/pmic.201700002. Epub 2017 Apr 10.

引用本文的文献

2
Screening of CCDC43 molecular partners by BioID2-based proximity labeling.
Turk J Biol. 2025 Mar 17;49(3):273-279. doi: 10.55730/1300-0152.2744. eCollection 2025.
4
Bridging molecular and cellular neuroscience with proximity labeling technologies.
Exp Mol Med. 2025 Jul 10. doi: 10.1038/s12276-025-01491-4.
5
Antibody-Mediated Protein A-APEX2 Labeling (AMAPEX) for Proximity Proteome Exploration.
Methods Mol Biol. 2025;2953:295-310. doi: 10.1007/978-1-0716-4694-6_19.
6
EGFR Phosphorylates and Associates with EFNB1 to Regulate Cell Adhesion to Fibronectin.
Mol Cell Proteomics. 2025 Jul 4;24(8):101027. doi: 10.1016/j.mcpro.2025.101027.
7
Protocol for identifying components of subcellular compartments by antibody-based in situ biotinylation.
STAR Protoc. 2025 Apr 30;6(2):103803. doi: 10.1016/j.xpro.2025.103803.
8
Site-2 protease Sll0528 interacts with RbcR to regulate carbon/nitrogen homeostasis in the cyanobacterium sp. PCC 6803.
Front Microbiol. 2025 Apr 9;16:1556583. doi: 10.3389/fmicb.2025.1556583. eCollection 2025.
10
Progress toward a comprehensive brain protein interactome.
Biochem Soc Trans. 2025 Feb 12;53(1):BST20241135. doi: 10.1042/BST20241135.

本文引用的文献

1
Split-TurboID enables contact-dependent proximity labeling in cells.
Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):12143-12154. doi: 10.1073/pnas.1919528117. Epub 2020 May 18.
2
Contact-ID, a tool for profiling organelle contact sites, reveals regulatory proteins of mitochondrial-associated membrane formation.
Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):12109-12120. doi: 10.1073/pnas.1916584117. Epub 2020 May 15.
4
Comparative Application of BioID and TurboID for Protein-Proximity Biotinylation.
Cells. 2020 Apr 25;9(5):1070. doi: 10.3390/cells9051070.
5
Characterisation of the biochemical and cellular roles of native and pathogenic amelogenesis imperfecta mutants of FAM83H.
Cell Signal. 2020 Aug;72:109632. doi: 10.1016/j.cellsig.2020.109632. Epub 2020 Apr 11.
6
Proteomic analysis of desmosomes reveals novel components required for epidermal integrity.
Mol Biol Cell. 2020 May 15;31(11):1140-1153. doi: 10.1091/mbc.E19-09-0542. Epub 2020 Apr 2.
7
Capturing RNA-protein interaction via CRUIS.
Nucleic Acids Res. 2020 May 21;48(9):e52. doi: 10.1093/nar/gkaa143.
8
Proximity Dependent Biotinylation: Key Enzymes and Adaptation to Proteomics Approaches.
Mol Cell Proteomics. 2020 May;19(5):757-773. doi: 10.1074/mcp.R120.001941. Epub 2020 Mar 3.
9
Cell-Surface Proteomic Profiling in the Fly Brain Uncovers Wiring Regulators.
Cell. 2020 Jan 23;180(2):373-386.e15. doi: 10.1016/j.cell.2019.12.029. Epub 2020 Jan 16.
10
Identification of a Small Probe That Can Be Conjugated to Proteins by Proximity Labeling.
ACS Chem Biol. 2020 Jan 17;15(1):39-43. doi: 10.1021/acschembio.9b00842. Epub 2019 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验