Suppr超能文献

用天然质谱法监测 K-RAS 的内在 GTPase 活性。

Intrinsic GTPase Activity of K-RAS Monitored by Native Mass Spectrometry.

机构信息

Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States.

Department of Chemistry , Indiana University , Bloomington , Indiana , 47405 , United States.

出版信息

Biochemistry. 2019 Aug 6;58(31):3396-3405. doi: 10.1021/acs.biochem.9b00532. Epub 2019 Jul 22.

Abstract

Mutations in RAS are associated with many different cancers and have been a therapeutic target for more than three decades. RAS cycles from an active to inactive state by both intrinsic and GTPase-activating protein (GAP)-stimulated hydrolysis. The activated enzyme interacts with downstream effectors, leading to tumor proliferation. Mutations in RAS associated with cancer are insensitive to GAP, and the rate of inactivation is limited to their intrinsic hydrolysis rate. Here, we use high-resolution native mass spectrometry (MS) to determine the kinetics and transition state thermodynamics of intrinsic hydrolysis for K-RAS and its oncogenic mutants. MS data reveal heterogeneity where both 2'-deoxy and 2'-hydroxy forms of GDP (guanosine diphosphate) and GTP (guanosine triphosphate) are bound to the recombinant enzyme. Intrinsic GTPase activity is directly monitored by the loss in mass of K-RAS bound to GTP, which corresponds to the release of phosphate. The rates determined from MS are in direct agreement with those measured using an established solution-based assay. Our results show that the transition state thermodynamics for the intrinsic GTPase activity of K-RAS is both enthalpically and entropically unfavorable. The oncogenic mutants G12C, Q61H, and G13D unexpectedly exhibit a 2'-deoxy GTP intrinsic hydrolysis rate higher than that for GTP.

摘要

RAS 突变与许多不同的癌症有关,并且已经成为三十多年的治疗靶点。RAS 通过内在和 GTP 酶激活蛋白 (GAP) 刺激的水解作用从活性状态循环到非活性状态。激活的酶与下游效应物相互作用,导致肿瘤增殖。与癌症相关的 RAS 突变对 GAP 不敏感,失活的速度仅限于其内在水解速度。在这里,我们使用高分辨率的天然质谱 (MS) 来确定 K-RAS 及其致癌突变体的内在水解的动力学和过渡态热力学。MS 数据显示出异质性,其中 GDP(二磷酸鸟苷)和 GTP(三磷酸鸟苷)的 2'-脱氧和 2'-羟基形式都与重组酶结合。通过与 GTP 结合的 K-RAS 的质量损失直接监测内在 GTP 酶活性,这对应于磷酸盐的释放。从 MS 确定的速率与使用既定的基于溶液的测定法测量的速率直接一致。我们的结果表明,K-RAS 内在 GTP 酶活性的过渡态热力学在焓和熵上都是不利的。致癌突变体 G12C、Q61H 和 G13D 出人意料地表现出比 GTP 更高的 2'-脱氧 GTP 内在水解速率。

相似文献

1
Intrinsic GTPase Activity of K-RAS Monitored by Native Mass Spectrometry.
Biochemistry. 2019 Aug 6;58(31):3396-3405. doi: 10.1021/acs.biochem.9b00532. Epub 2019 Jul 22.
3
2'-Deoxy Guanosine Nucleotides Alter the Biochemical Properties of Ras.
Biochemistry. 2023 Aug 15;62(16):2450-2460. doi: 10.1021/acs.biochem.3c00258. Epub 2023 Jul 24.
5
Structural insight into the rearrangement of the switch I region in GTP-bound G12A K-Ras.
Acta Crystallogr D Struct Biol. 2017 Dec 1;73(Pt 12):970-984. doi: 10.1107/S2059798317015418. Epub 2017 Nov 10.
8
How does GAP catalyze the GTPase reaction of Ras? A computer simulation study.
Biochemistry. 2000 Aug 15;39(32):9641-51. doi: 10.1021/bi000640e.
9
Mechanism of GTP hydrolysis by p21N-ras catalyzed by GAP: studies with a fluorescent GTP analogue.
Biochemistry. 1993 Jul 27;32(29):7451-9. doi: 10.1021/bi00080a016.
10
Conformational Dynamics Allows Sampling of an "Active-like" State by Oncogenic K-Ras-GDP.
J Mol Biol. 2022 Sep 15;434(17):167695. doi: 10.1016/j.jmb.2022.167695. Epub 2022 Jun 23.

引用本文的文献

2
Real time characterization of the MAPK pathway using native mass spectrometry.
Commun Biol. 2025 Apr 16;8(1):617. doi: 10.1038/s42003-025-08028-5.
5
Capturing RAS oligomerization on a membrane.
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2405986121. doi: 10.1073/pnas.2405986121. Epub 2024 Aug 15.
7
Progress in Targeting KRAS Directly.
Methods Mol Biol. 2024;2797:1-12. doi: 10.1007/978-1-0716-3822-4_1.
8
Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma.
Biophys Rev (Melville). 2022 Mar 17;3(1):011306. doi: 10.1063/5.0080512. eCollection 2022 Mar.
9
Farnesyl-transferase inhibitors show synergistic anticancer effects in combination with novel KRAS-G12C inhibitors.
Br J Cancer. 2024 Apr;130(6):1059-1072. doi: 10.1038/s41416-024-02586-x. Epub 2024 Jan 26.
10
Advances in mass spectrometry to unravel the structure and function of protein condensates.
Nat Protoc. 2023 Dec;18(12):3653-3661. doi: 10.1038/s41596-023-00900-0. Epub 2023 Oct 31.

本文引用的文献

1
New insights into the metal-induced oxidative degradation pathways of transthyretin.
Chem Commun (Camb). 2019 Apr 2;55(28):4091-4094. doi: 10.1039/c9cc00682f.
2
Topological Analysis of Transthyretin Disassembly Mechanism: Surface-Induced Dissociation Reveals Hidden Reaction Pathways.
Anal Chem. 2019 Feb 5;91(3):2345-2351. doi: 10.1021/acs.analchem.8b05066. Epub 2019 Jan 28.
3
Quantitative Measurement of Intrinsic GTP Hydrolysis for Carcinogenic Glutamine 61 Mutants in H-Ras.
Biochemistry. 2018 Nov 6;57(44):6356-6366. doi: 10.1021/acs.biochem.8b00878. Epub 2018 Oct 29.
4
Fourier Transform-Ion Mobility-Orbitrap Mass Spectrometer: A Next-Generation Instrument for Native Mass Spectrometry.
Anal Chem. 2018 Sep 4;90(17):10472-10478. doi: 10.1021/acs.analchem.8b02463. Epub 2018 Aug 22.
5
Deoxyribonucleotide Triphosphate Metabolism in Cancer and Metabolic Disease.
Front Endocrinol (Lausanne). 2018 Apr 18;9:177. doi: 10.3389/fendo.2018.00177. eCollection 2018.
6
Allostery revealed within lipid binding events to membrane proteins.
Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):2976-2981. doi: 10.1073/pnas.1719813115. Epub 2018 Mar 5.
7
An Interlaboratory Evaluation of Drift Tube Ion Mobility-Mass Spectrometry Collision Cross Section Measurements.
Anal Chem. 2017 Sep 5;89(17):9048-9055. doi: 10.1021/acs.analchem.7b01729. Epub 2017 Aug 16.
8
Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.
J Am Chem Soc. 2016 Apr 6;138(13):4346-9. doi: 10.1021/jacs.6b01771. Epub 2016 Mar 25.
10
Ras Conformational Ensembles, Allostery, and Signaling.
Chem Rev. 2016 Jun 8;116(11):6607-65. doi: 10.1021/acs.chemrev.5b00542. Epub 2016 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验