Suppr超能文献

FSM:用于探索高阶网络组织的快速可扩展网络基元发现。

FSM: Fast and scalable network motif discovery for exploring higher-order network organizations.

机构信息

School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.

School of Computer Science, Northwestern Polytechnical University, Xi'an, China.

出版信息

Methods. 2020 Feb 15;173:83-93. doi: 10.1016/j.ymeth.2019.07.008. Epub 2019 Jul 12.

Abstract

Networks exhibit rich and diverse higher-order organizational structures. Network motifs, which are recurring significant patterns of inter-connections, are recognized as fundamental units to study the higher-order organizations of networks. However, the principle of selecting representative network motifs for local motif based clustering remains largely unexplored. We present a scalable algorithm called FSM for network motif discovery. FSM is advantageous in twofold. First, it accelerates the motif discovery process by effectively reducing the number of times for subgraph isomorphism labeling. Second, FSM adopts multiple heuristic optimizations for subgraph enumeration and classification to further improve its performance. Experimental results on biological networks show that, comparing with the existing network motif discovery algorithm, FSM is more efficient on computational efficiency and memory usage. Furthermore, with the large, frequent, and sparse network motifs discovered by FSM, the higher-order organizational structures of biological networks were successfully revealed, indicating that FSM is suitable to select network representative network motifs for exploring high-order network organizations.

摘要

网络表现出丰富多样的高阶组织结构。网络基元是连接模式的重复出现,被认为是研究网络高阶组织的基本单元。然而,用于基于局部基元聚类的代表性网络基元的选择原则在很大程度上仍未得到探索。我们提出了一种名为 FSM 的可扩展算法,用于网络基元发现。FSM 具有两个优势。首先,通过有效地减少子图同构标记的次数,加速了基元发现过程。其次,FSM 采用了多种启发式优化方法来进行子图枚举和分类,以进一步提高性能。在生物网络上的实验结果表明,与现有的网络基元发现算法相比,FSM 在计算效率和内存使用方面更高效。此外,通过 FSM 发现的大量、频繁和稀疏的网络基元,成功揭示了生物网络的高阶组织结构,表明 FSM 适合选择网络代表性基元来探索高阶网络组织。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验