Suppr超能文献

半理性设计的大肠杆菌 S-腺苷甲硫氨酸合成酶变体,降低了产物抑制,提高了催化活性。

Semi-rationally engineered variants of S-adenosylmethionine synthetase from Escherichia coli with reduced product inhibition and improved catalytic activity.

机构信息

Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.

Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.

出版信息

Enzyme Microb Technol. 2019 Oct;129:109355. doi: 10.1016/j.enzmictec.2019.05.012. Epub 2019 May 28.

Abstract

S-adenosylmethionine synthetase (MAT) catalyzes the synthesis of S-adenosylmethionine (SAM) from ATP and L-methionine. SAM is the major methyl donor for more than 100 transmethylation reactions. It is also a common cosubstrate involved in transsulfuration and aminopropylation. However, product inhibition largely restrains the activity of MAT and limits the enzymatic synthesis of SAM. In this research, the product inhibition of MAT from Escherichia coli was reduced via semi-rational modification. A triple variant (Variant III, I303 V/I65 V/L186 V) showed a 42-fold increase in K and a 2.08-fold increase in specific activity when compared to wild-type MAT. Its K was 0.42 mM and specific acitivity was 3.78 ±0.19 U/mg. Increased K means reduced product inhibition which enhances SAM accumulation. The SAM produced by Variant III could reach to 3.27 mM while SAM produced by wild-type MAT was 1.62 mM in the presence of 10 mM substrates. When the residue in 104 of Variant III was further optimized by site-saturated mutagenesis, the specific activity of Variant IV (I303 V/I65 V/L186 V/N104 K) reached to 6.02 ±0.22 U/mg at 37 °C, though the SAM concentration decreased to 2.68 mM with 10 mM substrates. Analysis of protein 3D structure suggests that changes in hydrogen bonds or other ligand interactions around active site may account for the variety of product inhibition and enzyme activity. The Variant III and Variant IV with reduced inhibition and improved enzyme activity in the study would be more suitable candidates for SAM production in the future.

摘要

S-腺苷甲硫氨酸合成酶(MAT)催化三磷酸腺苷(ATP)和 L-蛋氨酸合成 S-腺苷甲硫氨酸(SAM)。SAM 是 100 多种转甲基反应的主要甲基供体。它也是转硫和氨丙基化中常见的共同辅助因子。然而,产物抑制在很大程度上限制了 MAT 的活性,限制了 SAM 的酶促合成。在这项研究中,通过半理性修饰降低了来自大肠杆菌的 MAT 的产物抑制。与野生型 MAT 相比,三重变体(变体 III,I303V/I65V/L186V)的 K 值增加了 42 倍,比活增加了 2.08 倍。其 K 值为 0.42 mM,比活为 3.78 ±0.19 U/mg。增加的 K 值意味着产物抑制降低,从而增强了 SAM 的积累。在 10 mM 底物存在的情况下,变体 III 产生的 SAM 可达到 3.27 mM,而野生型 MAT 产生的 SAM 为 1.62 mM。当通过定点饱和诱变进一步优化变体 III 中 104 位残基时,变体 IV(I303V/I65V/L186V/N104K)的比活达到 6.02 ±0.22 U/mg,尽管在 10 mM 底物存在的情况下 SAM 浓度降低至 2.68 mM。对蛋白质 3D 结构的分析表明,活性位点周围氢键或其他配体相互作用的变化可能导致产物抑制和酶活性的多样性。在本研究中,具有降低的抑制作用和提高的酶活性的变体 III 和变体 IV 将来可能更适合用于 SAM 的生产。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验