Suppr超能文献

具有优异光吸收和电子性能的新型氢掺杂、氧缺陷单斜氧化锆的计算设计

Computational Design of Novel Hydrogen-Doped, Oxygen-Deficient Monoclinic Zirconia with Excellent Optical Absorption and Electronic Properties.

作者信息

Tolba Sarah A, Allam Nageh K

机构信息

Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt.

出版信息

Sci Rep. 2019 Jul 15;9(1):10159. doi: 10.1038/s41598-019-46778-5.

Abstract

Monoclinic ZrO has recently emerged as a new highly efficient material for the photovoltaic and photocatalytic applications. Herein, first-principles calculations were carried out to understand how Hydrogen doping can affect the electronic structure and optical properties of the material. The effects of Hydrogen interstitial and substitutional doping at different sites and concentrations in m-ZrO were examined by an extensive model study to predict the best structure with the optimal properties for use in solar energy conversion devices. Hydrogen interstitials (Hi) in pristine m-ZrO were found to lower the formation energy but without useful effects on the electronic or optical properties. Hydrogen mono- and co-occupying oxygen vacancy (Ov) were also investigated. At low concentration of Hydrogen mono-occupying oxygen vacancy (HOv), Hydrogen atoms introduced shallow states below the conduction band minimum (CBM) and increase the dielectric constant, which could be very useful for gate dielectric application. The number and position of such defect states strongly depend on the doping sites and concentration. At high oxygen vacancy concentration, the modeled HOv-Ov structure shows the formation of shallow and localized states that are only 1.1 eV below the CBM with significantly high dielectric constant and extended optical absorption to the infrared region. This strong absorption with the high permittivity and low exciton binding energies make the material an ideal candidate for use in solar energy harvesting devices. Finally, the band edge positions of pristine and doped structures with respect to the redox potentials of water splitting indicated that Hydrogen occupying oxygen vacancies can increase the photocatalytic activity of the material for hydrogen generation due the extremely improved optical absorption and the band gap states.

摘要

单斜晶系氧化锆最近已成为一种用于光伏和光催化应用的新型高效材料。在此,进行了第一性原理计算,以了解氢掺杂如何影响该材料的电子结构和光学性质。通过广泛的模型研究,考察了氢间隙掺杂和替代掺杂在单斜晶系氧化锆中不同位置和浓度的影响,以预测具有用于太阳能转换装置的最佳性能的最佳结构。发现原始单斜晶系氧化锆中的氢间隙(Hi)降低了形成能,但对电子或光学性质没有有益影响。还研究了单占和共占氧空位(Ov)的氢。在低浓度的单占氧空位氢(HOv)情况下,氢原子在导带最小值(CBM)以下引入浅能级并增加介电常数,这对于栅极电介质应用可能非常有用。此类缺陷态的数量和位置强烈依赖于掺杂位置和浓度。在高氧空位浓度下,模拟的HOv - Ov结构显示形成了仅比CBM低1.1 eV的浅局域态,具有显著高的介电常数和扩展至红外区域的光吸收。这种具有高介电常数和低激子结合能的强吸收使该材料成为用于太阳能收集装置的理想候选材料。最后,原始结构和掺杂结构相对于水分解氧化还原电位的带边位置表明,由于光吸收和带隙态得到极大改善,占据氧空位的氢可提高该材料用于制氢的光催化活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad6c/6629681/2b29b5031f31/41598_2019_46778_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验