Suppr超能文献

全球转录组和基因共表达网络分析在报春花属 Oreodoxa 二型花柱发育中的作用。

Global transcriptome and gene co-expression network analyses on the development of distyly in Primula oreodoxa.

机构信息

Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, 510650, China.

Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.

出版信息

Heredity (Edinb). 2019 Dec;123(6):784-794. doi: 10.1038/s41437-019-0250-y. Epub 2019 Jul 15.

Abstract

Distyly is a genetically controlled flower polymorphism that has intrigued both botanists and evolutionary biologists ever since Darwin's time. Despite extensive reports on the pollination and evolution of distylous systems, the genetic basis and mechanism of molecular regulation remain unclear. In the present study, comparative transcriptome profiling was conducted in primrose (Primula oreodoxa), the prime research model for heterostyly. Thirty-six transcriptomes were sequenced for styles at different stages and corolla tube in the three morphs of P. oreodoxa. Large numbers of differentially expressed genes (DEGs) were detected in the transcriptomes of styles across different morphs. Several transcription factors (TFs) and phytohormone metabolism-related genes were highlighted in S-morphs. A growing number of genes showed differential expression patterns along with the development of styles, suggesting that the genetic control of distyly may be more complicated than ever expected. Analysis of co-expression networks and module-trait relationships identified modules significantly associated with style development. CYP734A50, a key S-locus gene whose products degrade brassinosteroids, was co-expressed with many genes in the module and showed significant negative association with style length. In addition, crucial TFs involved in phytohormone signaling pathways were found to be connected with CYP734A50 in the co-expression module. Our global transcriptomic analysis has identified DEGs that are potentially involved in regulation of style length in P. oreodoxa, and may shed light on the evolution and broad biological processes of heterostyly.

摘要

异型花柱是一种受遗传控制的花的多态性,自达尔文时代以来一直引起植物学家和进化生物学家的兴趣。尽管有大量关于异型花柱系统的授粉和进化的报道,但遗传基础和分子调控机制仍不清楚。在本研究中,对报春花(Primula oreodoxa)进行了比较转录组谱分析,报春花是异型花柱的主要研究模式。对 P. oreodoxa 的三个形态的不同阶段的花柱和花冠管进行了 36 个转录组测序。在不同形态的花柱转录组中检测到大量差异表达基因(DEGs)。在 S 形态中突出了几个转录因子(TFs)和植物激素代谢相关基因。越来越多的基因随着花柱的发育表现出不同的表达模式,这表明异型花柱的遗传控制可能比预期的更复杂。共表达网络和模块-性状关系的分析确定了与花柱发育显著相关的模块。CYP734A50 是 S 座位基因的一个关键基因,其产物降解油菜素内酯,与模块中的许多基因共表达,并与花柱长度呈显著负相关。此外,在共表达模块中发现参与植物激素信号通路的关键 TF 与 CYP734A50 相连。我们的全局转录组分析确定了可能参与调控 P. oreodoxa 花柱长度的 DEGs,这可能揭示异型花柱的进化和广泛的生物学过程。

相似文献

1
Global transcriptome and gene co-expression network analyses on the development of distyly in Primula oreodoxa.
Heredity (Edinb). 2019 Dec;123(6):784-794. doi: 10.1038/s41437-019-0250-y. Epub 2019 Jul 15.
5
Genetics of distyly and homostyly in a self-compatible Primula.
Heredity (Edinb). 2019 Jan;122(1):110-119. doi: 10.1038/s41437-018-0081-2. Epub 2018 May 4.
7
Genomic evidence supports the genetic convergence of a supergene controlling the distylous floral syndrome.
New Phytol. 2023 Jan;237(2):601-614. doi: 10.1111/nph.18540. Epub 2022 Nov 22.
8
PfPIN5 promotes style elongation by regulating cell length in Primula forbesii Franch.
Ann Bot. 2024 Apr 10;133(3):473-482. doi: 10.1093/aob/mcae004.
9
Inheritance of distyly and homostyly in self-incompatible Primula forbesii.
Heredity (Edinb). 2023 Apr;130(4):259-268. doi: 10.1038/s41437-023-00598-6. Epub 2023 Feb 14.
10
Oakleaf: an S locus-linked mutation of Primula vulgaris that affects leaf and flower development.
New Phytol. 2015 Oct;208(1):149-61. doi: 10.1111/nph.13370. Epub 2015 Apr 9.

引用本文的文献

2
PfPIN5 promotes style elongation by regulating cell length in Primula forbesii Franch.
Ann Bot. 2024 Apr 10;133(3):473-482. doi: 10.1093/aob/mcae004.
4
Two floral forms in the same species-distyly.
Planta. 2023 Sep 1;258(4):72. doi: 10.1007/s00425-023-04229-6.
6
Gene coexpression analysis reveals key pathways and hub genes related to late-acting self-incompatibility in .
Front Plant Sci. 2023 Jan 24;13:1065872. doi: 10.3389/fpls.2022.1065872. eCollection 2022.
7
Unlocking the Hidden Genetic Diversity of Varicosaviruses, the Neglected Plant Rhabdoviruses.
Pathogens. 2022 Sep 29;11(10):1127. doi: 10.3390/pathogens11101127.
9

本文引用的文献

1
Genetics of distyly and homostyly in a self-compatible Primula.
Heredity (Edinb). 2019 Jan;122(1):110-119. doi: 10.1038/s41437-018-0081-2. Epub 2018 May 4.
2
Examination of -Locus Regulated Differential Expression in Floral Development.
Plants (Basel). 2018 May 2;7(2):38. doi: 10.3390/plants7020038.
3
CRISPR-Cas9 based plant genome editing: Significance, opportunities and recent advances.
Plant Physiol Biochem. 2018 Oct;131:2-11. doi: 10.1016/j.plaphy.2017.10.024. Epub 2017 Oct 27.
4
A short story gets longer: recent insights into the molecular basis of heterostyly.
J Exp Bot. 2017 Dec 16;68(21-22):5719-5730. doi: 10.1093/jxb/erx387.
6
Time-Course Transcriptome Analysis of Compatible and Incompatible Pollen-Stigma Interactions in L.
Front Plant Sci. 2017 May 3;8:682. doi: 10.3389/fpls.2017.00682. eCollection 2017.
8
Phylogeographic insights on the evolutionary breakdown of heterostyly.
New Phytol. 2017 May;214(3):1368-1380. doi: 10.1111/nph.14453. Epub 2017 Feb 8.
9
Sequencing and Comparative Transcriptomics of Floral Development of the Distylous Species .
Front Plant Sci. 2016 Dec 23;7:1934. doi: 10.3389/fpls.2016.01934. eCollection 2016.
10
Genetic architecture and evolution of the S locus supergene in Primula vulgaris.
Nat Plants. 2016 Dec 2;2(12):16188. doi: 10.1038/nplants.2016.188.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验