IHU Strasbourg, Institute of Image-Guided Surgery, 1 Place de l'Hôpital, 67091, Strasbourg, France.
EA 3072, Fédération de Médecine Translationnelle de Strasbourg, Medical University of Strasbourg, Strasbourg, France.
Surg Endosc. 2020 Apr;34(4):1736-1744. doi: 10.1007/s00464-019-06959-9. Epub 2019 Jul 15.
HSI is an optical technology allowing for a real-time, contrast-free snapshot of physiological tissue properties, including oxygenation. Hyperspectral imaging (HSI) has the potential to quantify the gastrointestinal perfusion intraoperatively. This experimental study evaluates the accuracy of HSI, in order to quantify bowel perfusion, and to obtain a superposition of the hyperspectral information onto real-time images.
In 6 pigs, 4 ischemic bowel loops were created (A, B, C, D) and imaged at set time points (from 5 to 360 min). A commercially available HSI system provided pseudo-color maps of the perfusion status (StO2, Near-InfraRed perfusion) and the tissue water index. An ad hoc software was developed to superimpose HSI information onto the live video, creating the HYPerspectral-based Enhanced Reality (HYPER). Seven regions of interest (ROIs) were identified in each bowel loop according to StO2 ranges, i.e., vascular (VASC proximal and distal), marginal vascular (MV proximal and distal), marginal ischemic (MI proximal and distal), and ischemic (ISCH). Local capillary lactates (LCL), reactive oxygen species (ROS), and histopathology were measured at the ROIs. A machine-learning-based prediction algorithm of LCL, based on the HSI-StO2%, was trained in the 6 pigs and tested on 5 additional animals.
HSI parameters (StO2 and NIR) were congruent with LCL levels, ROS production, and histopathology damage scores at the ROIs discriminated by HYPER. The global mean error of LCL prediction was 1.18 ± 1.35 mmol/L. For StO2 values > 30%, the mean error was 0.3 ± 0.33.
HYPER imaging could precisely quantify the overtime perfusion changes in this bowel ischemia model.
HSI 是一种光学技术,可实时、无对比地捕捉生理组织特性,包括氧合。高光谱成像(HSI)有可能在术中量化胃肠道灌注。本实验研究评估了 HSI 的准确性,以便量化肠道灌注,并将高光谱信息叠加到实时图像上。
在 6 头猪中,创建了 4 个缺血性肠袢(A、B、C、D),并在设定的时间点(5 至 360 分钟)进行成像。商用 HSI 系统提供了灌注状态的伪彩色图(StO2、近红外灌注)和组织水指数。开发了一个专用软件将 HSI 信息叠加到实时视频上,创建了基于高光谱的增强现实(HYPER)。根据 StO2 范围,在每个肠袢中确定了 7 个感兴趣区域(ROI),即血管(VASC 近端和远端)、边缘血管(MV 近端和远端)、边缘缺血(MI 近端和远端)和缺血(ISCH)。在 ROI 处测量局部毛细血管乳酸(LCL)、活性氧(ROS)和组织病理学。在 6 头猪中基于 HSI-StO2% 训练了 LCL 的基于机器学习的预测算法,并在 5 头额外的动物上进行了测试。
HSI 参数(StO2 和 NIR)与 LCL 水平、ROS 产生以及 ROI 处的组织病理学损伤评分一致,这些 ROI 是由 HYPER 区分的。LCL 预测的全局平均误差为 1.18±1.35mmol/L。对于 StO2 值>30%,平均误差为 0.3±0.33。
HYPER 成像可以精确地量化这种肠缺血模型中随时间的灌注变化。