Suppr超能文献

“电子舌”研究中用于漂移校正和多元校准转移的响应标准化

Response Standardization for Drift Correction and Multivariate Calibration Transfer in "Electronic Tongue" Studies.

作者信息

Panchuk Vitaly, Semenov Valentin, Lvova Larisa, Legin Andrey, Kirsanov Dmitry

机构信息

Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia.

Laboratory of Artificial Sensory Systems, ITMO University, St. Petersburg, Russia.

出版信息

Methods Mol Biol. 2019;2027:181-194. doi: 10.1007/978-1-4939-9616-2_15.

Abstract

The procedures for response standardization in "electronic tongue" (ET) studies are described. The construction of reliable multivariate calibration for "electronic tongue" requires the analysis of a large number of representative samples both with ET and reference techniques. This is a laborious and expensive process. Long-term sensor array operation leads to the changes in sensor response characteristics and thus invalidates the multivariate predictive models. Moreover, due to the individual parameters of each sensor in different sensor arrays, it is not possible to use the calibration model for one system together with the data acquired by another system, even if they have the same sensors. Both of these issues lead to the necessity of frequent sensor array calibration which would be ideal to avoid. Instead of recalibration, these two problems can be handled using mathematical methods intended for sensor response standardization. This chapter describes two popular methods of standardization which can be used for both drift correction and calibration transfer. Thus, significant efforts on measuring representative sample sets for sensor array recalibration can be avoided.

摘要

本文描述了“电子舌”(ET)研究中响应标准化的程序。构建可靠的“电子舌”多元校准需要使用电子舌和参考技术对大量代表性样本进行分析。这是一个费力且昂贵的过程。传感器阵列的长期运行会导致传感器响应特性发生变化,从而使多元预测模型失效。此外,由于不同传感器阵列中每个传感器的个体参数不同,即使它们具有相同的传感器,也无法将一个系统的校准模型与另一个系统采集的数据一起使用。这两个问题都导致需要频繁进行传感器阵列校准,而这是理想情况下应避免的。不用重新校准,这两个问题可以使用旨在进行传感器响应标准化的数学方法来处理。本章介绍了两种流行的标准化方法,它们可用于漂移校正和校准转移。因此,可以避免在测量代表性样本集以进行传感器阵列重新校准方面付出巨大努力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验