Suppr超能文献

儿茶酚胺与高碳酸血症对离体虹鳟肝细胞葡萄糖生成的交互作用。

Interactive effects of catecholamines and hypercapnia on glucose production in isolated trout hepatocytes.

作者信息

Mommsen T P, Walsh P J, Perry S F, Moon T W

机构信息

Department of Biology, University of Ottawa, Ontario, Canada.

出版信息

Gen Comp Endocrinol. 1988 Apr;70(1):63-73. doi: 10.1016/0016-6480(88)90094-9.

Abstract

In response to added catecholamines, isolated trout (Salmo gairdneri) hepatocytes substantially increase the output of glucose into the surrounding medium. This effect is due to activation of glycogen breakdown concomitant with increases in gluconeogenesis and cell respiration. Each metabolic parameter is activated to a similar extent. In hormone-treated and untreated cells, glycogenolysis accounts for more than 97% of glucose production. Activation of glycogen phosphorylase is implicated in the degradation of cell glycogen, while increased flux through the gluconeogenic pathway from lactate is associated with inactivation of pyruvate kinase, possibly through enzyme phosphorylation as indicated by the activity ratio measured at low and saturating concentrations of phosphoenolpyruvate. From studies with specific adrenergic agonists and antagonists, we conclude that stimulation of glycogenolysis and gluconeogenesis in trout hepatocytes is consistent with a beta-adrenergic effect. Results are inconclusive with respect to catecholamine-mediated activation of cell respiration. None of the monitored cell acid-base variables (pH, PCO2, [HCO3-]) are implicated in the catecholamine-dependent changes in metabolic output of hepatocytes. Imposed hypercapnic conditions (increased medium PCO2 and decreased medium pH), which cause changes in cell acid-base parameters, result in a depression of lactate oxidation and gluconeogenesis, while the rate of glycogenolysis is not affected. In addition, the total amounts of glycogen phosphorylase and pyruvate kinase assayable are negatively affected by hypercapnic treatment of hepatocytes. Under hypercapnic conditions, cells are highly responsive to adrenergic agonists. It appears that--especially in the long term--the catecholamine-dependent activation of gluconeogenesis may compensate for the acid-base-dependent shortfall in glucose output by the liver.

摘要

对添加的儿茶酚胺作出反应时,分离出的虹鳟(Salmo gairdneri)肝细胞会大幅增加葡萄糖向周围培养基中的输出量。这种效应是由于糖原分解的激活,同时伴随着糖异生作用和细胞呼吸的增加。每个代谢参数的激活程度相似。在激素处理和未处理的细胞中,糖原分解占葡萄糖生成的97%以上。糖原磷酸化酶的激活与细胞糖原的降解有关,而从乳酸通过糖异生途径通量的增加与丙酮酸激酶的失活有关,这可能是通过磷酸烯醇丙酮酸低浓度和饱和浓度下测得的活性比所表明的酶磷酸化实现的。通过对特定肾上腺素能激动剂和拮抗剂的研究,我们得出结论,虹鳟肝细胞中糖原分解和糖异生的刺激与β - 肾上腺素能效应一致。关于儿茶酚胺介导的细胞呼吸激活,结果尚无定论。所监测的细胞酸碱变量(pH、PCO2、[HCO3-])均与肝细胞代谢输出中儿茶酚胺依赖性变化无关。施加的高碳酸血症条件(培养基PCO2增加和培养基pH降低)会导致细胞酸碱参数发生变化,从而导致乳酸氧化和糖异生作用受到抑制,而糖原分解速率不受影响。此外,可检测到的糖原磷酸化酶和丙酮酸激酶的总量受到肝细胞高碳酸血症处理的负面影响。在高碳酸血症条件下,细胞对肾上腺素能激动剂高度敏感。似乎——尤其是从长期来看——儿茶酚胺依赖性的糖异生激活可能会弥补肝脏因酸碱因素导致的葡萄糖输出不足。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验