Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.
Wallenberg Wood Science Center, Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
Nanoscale. 2019 Nov 7;11(41):19278-19284. doi: 10.1039/c9nr04142g. Epub 2019 Jul 17.
Inspired by the Bogolanfini dyeing technique, we report how flexible nanofibrillated cellulose (CNF) films can be functionalized and patterned by surface-bound nanoparticles of hydrolyzable tannins and multivalent metal ions with tunable colors. Molecular dynamics simulations show that gallic acid (GA) and ellagic acid (EA) rapidly adsorb and assemble on the CNF surface, and atomic force microscopy confirms that nanosized GA assemblies cover the surface of the CNF. CNF films were patterned with tannin-metal ion nanoparticles by an in-fibre reaction between the pre-impregnated tannin and the metal ions in the printing ink. Spectroscopic studies show that the Fe ions interact with GA and form surface-bound, stable GA-Fe nanoparticles. The functionalization and patterning of CNF films with metal ion-hydrolyzable tannin nanoparticles is a versatile route to functionalize films based on renewable materials and of interest for biomedical and environmental applications.
受博戈拉菲尼染色技术的启发,我们报告了如何通过可水解单宁和多价金属离子表面结合的纳米粒子对柔性纳米原纤纤维素(CNF)薄膜进行功能化和图案化处理,得到具有可调颜色的薄膜。分子动力学模拟表明,没食子酸(GA)和鞣花酸(EA)能够快速吸附并组装在 CNF 表面上,原子力显微镜证实纳米 GA 组装体覆盖了 CNF 的表面。通过预浸渍单宁与油墨中金属离子在纤维内的反应,将单宁-金属离子纳米颗粒图案化到 CNF 薄膜上。光谱研究表明,Fe 离子与 GA 相互作用,形成表面结合的、稳定的 GA-Fe 纳米颗粒。基于可再生材料的 CNF 薄膜的金属离子可水解单宁纳米颗粒的功能化和图案化是一种多功能途径,对生物医学和环境应用具有重要意义。