Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States.
J Chem Theory Comput. 2019 Sep 10;15(9):4915-4923. doi: 10.1021/acs.jctc.9b00518. Epub 2019 Aug 5.
Electronic couplings and vertical excitation energies are crucial determinants of charge and excitation energy transfer rates in a broad variety of processes ranging from biological charge transfer to charge transport through inorganic materials, from molecular sensing to intracellular signaling. Density Functional Theory (DFT) is generally used to calculate these critical parameters, but the quality of the results is unpredictable because of the semiempirical nature of the available DFT approaches. This study identifies a small set of fundamental rules that enables accurate DFT computation of electronic couplings and vertical excitation energies in molecular complexes and materials. These rules are applied to predict efficient DFT approaches to coupling calculations. The result is an easy-to-use guide for reliable DFT descriptions of electronic transitions.
电子耦合和垂直激发能是从生物电荷转移到无机材料中的电荷和激发能转移,从分子传感到细胞内信号传递等广泛过程中电荷和激发能转移速率的关键决定因素。密度泛函理论(DFT)通常用于计算这些关键参数,但由于可用的 DFT 方法具有半经验性质,因此结果的质量是不可预测的。本研究确定了一小组基本规则,这些规则可实现分子配合物和材料中电子耦合和垂直激发能的精确 DFT 计算。这些规则被应用于预测有效的 DFT 耦合计算方法。其结果是一个易于使用的指南,用于可靠的 DFT 描述电子跃迁。