Suppr超能文献

使用淀粉样蛋白正电子发射断层扫描对β-淀粉样蛋白病理学进行分期

Staging β-Amyloid Pathology With Amyloid Positron Emission Tomography.

作者信息

Mattsson Niklas, Palmqvist Sebastian, Stomrud Erik, Vogel Jacob, Hansson Oskar

机构信息

Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.

Department of Neurology, Skåne University Hospital, Lund, Sweden.

出版信息

JAMA Neurol. 2019 Nov 1;76(11):1319-1329. doi: 10.1001/jamaneurol.2019.2214.

Abstract

IMPORTANCE

Different brain regions appear to be involved during β-amyloid (Aβ) accumulation in Alzheimer disease (AD), but a longitudinally valid system to track Aβ stages in vivo using positron emission tomography (PET) is lacking.

OBJECTIVE

To construct a longitudinally valid in vivo staging system for AD using amyloid PET.

DESIGN, SETTING, AND PARTICIPANTS: Longitudinal multicenter cohort study using data accessed on August 20, 2018, from the Alzheimer's Disease Neuroimaging Initiative database of scans performed from June 9, 2010, to July 12, 2018, from 741 persons: 304 without cognitive impairment, 384 with mild cognitive impairment, and 53 with AD dementia. Cerebrospinal fluid (CSF) Aβ42 and fluorine 18-labeled florbetapir (18F-florbetapir) data were used to determine early, intermediate, and late regions of Aβ accumulation. β-Amyloid stages ranging from 0 to 3 were constructed using these composites. Each subsequent stage required involvement of more advanced regions. Patients were followed up at 2, 4, and 6 years. Replication and validation were conducted using an independent cohort (Swedish BioFINDER) and gene expression information from the Allen Human Brain Atlas database. Analyses were conducted August 21, 2018, to May 24, 2019.

MAIN OUTCOMES AND MEASURES

The main outcome was change in stage. Stages were compared for diagnosis, CSF biomarkers of tau, and longitudinal atrophy, cognitive measures, and regional gene expression. Transitions between stages were tested using longitudinal 18F-florbetapir data.

RESULTS

Among 641 participants with CSF Aβ42 data and at least two 18F-florbetapir scans, 335 (52.3%) were male. The early region of Aβ accumulation included the precuneus, posterior cingulate, isthmus cingulate, insula, and medial and lateral orbitofrontal cortices. The late region included the lingual, pericalcarine, paracentral, precentral, and postcentral cortices. The intermediate region included remaining brain regions with increased accumulation rates. In 2072 PET scans from 741 participants, 2039 (98.4%) were unambiguously staged. At baseline, participants with stage 0 (n = 402) had a 14.7% (95% CI, 11.2%-18.1%) probability of progression to a higher stage; stage 1 (n = 21), 71.4% (95% CI, 50.0%-90.9%); and stage 2 (n = 79), 53.1% (95% CI, 42.2%-64.0%). Seven of the 741 participants (0.9%) reverted to a lower stage. Higher stages were associated with lower CSF Aβ42 concentrations (from stage 1 at baseline), greater CSF P-tau (from stage 1) and CSF T-tau (from stage 2), and accelerated cognitive decline (from stage 2) and atrophy (from stage 3), even when adjusting for clinical diagnosis. Key findings were replicated in the BioFINDER cohort (N = 474). The regions of different stages differed by gene expression profiles when using the transcriptome from the Allen Human Brain Atlas, especially involving genes associated with voltage-gated ion channel activity especially involving genes associated with voltage-gated ion channel activity, but also blood circulation, axon guidance, and lipid transportation.

CONCLUSIONS AND RELEVANCE

Results of this study suggest that this robust staging system of Aβ accumulation may be useful for monitoring patients throughout the course of AD. Progression through stages may depend on underlying selective vulnerability in different brain regions.

摘要

重要性

在阿尔茨海默病(AD)中,β-淀粉样蛋白(Aβ)积累过程中不同脑区似乎都有参与,但缺乏一种使用正电子发射断层扫描(PET)在体内追踪Aβ阶段的纵向有效系统。

目的

使用淀粉样蛋白PET构建一个AD的纵向有效体内分期系统。

设计、地点和参与者:纵向多中心队列研究,使用2018年8月20日从阿尔茨海默病神经影像倡议数据库获取的数据,该数据库包含2010年6月9日至2018年7月12日对741人的扫描:304人无认知障碍,384人有轻度认知障碍,53人有AD痴呆。脑脊液(CSF)Aβ42和氟18标记的氟比他班(18F-氟比他班)数据用于确定Aβ积累的早期、中期和晚期区域。使用这些综合指标构建了从0到3的β-淀粉样蛋白阶段。每个后续阶段需要更高级区域的参与。患者在2年、4年和6年时进行随访。使用独立队列(瑞典生物标志物发现计划)和来自艾伦人类大脑图谱数据库的基因表达信息进行复制和验证。分析于2018年8月21日至2019年5月24日进行。

主要结局和指标

主要结局是阶段变化。比较各阶段的诊断、tau蛋白的脑脊液生物标志物、纵向萎缩、认知指标和区域基因表达。使用纵向18F-氟比他班数据测试阶段之间的转换。

结果

在641名有脑脊液Aβ42数据且至少有两次18F-氟比他班扫描的参与者中,335名(52.3%)为男性。Aβ积累的早期区域包括楔前叶、后扣带回、扣带回峡部、岛叶以及眶额内侧和外侧皮质。晚期区域包括舌回、距状周围、中央旁、中央前和中央后皮质。中间区域包括积累率增加的其余脑区。在741名参与者的2072次PET扫描中,2039次(98.4%)被明确分期。在基线时,0期(n = 402)的参与者进展到更高阶段的概率为14.7%(95%CI,11.2%-18.1%);1期(n = 21)为71.4%(95%CI,50.0%-90.9%);2期(n = 79)为53.1%(95%CI,42.2%-64.0%)。741名参与者中有7名(0.9%)恢复到较低阶段。更高阶段与更低的脑脊液Aβ42浓度(从基线1期开始)、更高的脑脊液磷酸化tau蛋白(从1期开始)和脑脊液总tau蛋白(从2期开始)以及加速的认知衰退(从2期开始)和萎缩(从3期开始)相关,即使在调整临床诊断后也是如此。关键发现在生物标志物发现计划队列(N = 474)中得到了重复。当使用来自艾伦人类大脑图谱的转录组时,不同阶段的区域在基因表达谱上存在差异,特别是涉及与电压门控离子通道活性相关的基因,也涉及血液循环、轴突导向和脂质运输相关的基因。

结论与意义

本研究结果表明,这种强大的Aβ积累分期系统可能有助于在AD病程中对患者进行监测。阶段进展可能取决于不同脑区潜在的选择性易损性。

相似文献

引用本文的文献

3
Personalised regional modelling predicts tau progression in the human brain.个性化区域建模可预测人类大脑中的tau蛋白进展。
PLoS Biol. 2025 Jul 21;23(7):e3003241. doi: 10.1371/journal.pbio.3003241. eCollection 2025 Jul.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验