Trépout Sylvain
Institut Curie, Inserm U1196, CNRS UMR 9187, Université Paris Sud, Centre Universitaire, Bât. 110-112, 91405 Orsay CEDEX, France.
Materials (Basel). 2019 Jul 16;12(14):2281. doi: 10.3390/ma12142281.
The reduction of the electron dose in electron tomography of biological samples is of high significance to diminish radiation damages. Simulations have shown that sparse data collection can perform efficient electron dose reduction. Frameworks based on compressive-sensing or inpainting algorithms have been proposed to accurately reconstruct missing information in sparse data. The present work proposes a practical implementation to perform tomographic collection of block-based sparse images in scanning transmission electron microscopy. The method has been applied on sections of chemically-fixed and resin-embedded cells. There are 3D reconstructions obtained from various amounts of downsampling, which are compared and eventually the limits of electron dose reduction using this method are explored.
在生物样品的电子断层扫描中降低电子剂量对于减少辐射损伤具有重要意义。模拟表明,稀疏数据采集可以有效地降低电子剂量。已经提出了基于压缩感知或图像修复算法的框架来精确重建稀疏数据中缺失的信息。目前的工作提出了一种在扫描透射电子显微镜中对基于块的稀疏图像进行断层扫描采集的实际实施方案。该方法已应用于化学固定和树脂包埋细胞的切片。通过不同程度的下采样获得了三维重建结果,并进行了比较,最终探索了使用该方法降低电子剂量的极限。