IEEE Trans Image Process. 2013 Nov;22(11):4532-44. doi: 10.1109/TIP.2013.2277784. Epub 2013 Aug 8.
High angle annular dark field (HAADF)-scanning transmission electron microscope (STEM) data is increasingly being used in the physical sciences to research materials in 3D because it reduces the effects of Bragg diffraction seen in bright field TEM data. Typically, tomographic reconstructions are performed by directly applying either filtered back projection (FBP) or the simultaneous iterative reconstruction technique (SIRT) to the data. Since HAADF-STEM tomography is a limited angle tomography modality with low signal to noise ratio, these methods can result in significant artifacts in the reconstructed volume. In this paper, we develop a model based iterative reconstruction algorithm for HAADF-STEM tomography. We combine a model for image formation in HAADF-STEM tomography along with a prior model to formulate the tomographic reconstruction as a maximum a posteriori probability (MAP) estimation problem. Our formulation also accounts for certain missing measurements by treating them as nuisance parameters in the MAP estimation framework. We adapt the iterative coordinate descent algorithm to develop an efficient method to minimize the corresponding MAP cost function. Reconstructions of simulated as well as experimental data sets show results that are superior to FBP and SIRT reconstructions, significantly suppressing artifacts and enhancing contrast.
高角度环形暗场(HAADF)-扫描透射电子显微镜(STEM)数据在物理科学中越来越多地被用于研究 3D 材料,因为它减少了在明场 TEM 数据中看到的布拉格衍射的影响。通常,通过直接将滤波后向投影(FBP)或同时迭代重建技术(SIRT)应用于数据来执行层析重建。由于 HAADF-STEM 层析是一种具有低信噪比的有限角度层析方式,这些方法可能会导致重建体积中出现明显的伪影。在本文中,我们为 HAADF-STEM 层析开发了一种基于模型的迭代重建算法。我们结合了 HAADF-STEM 层析中的图像形成模型以及先验模型,将层析重建表述为最大后验概率(MAP)估计问题。我们的公式还通过将它们视为 MAP 估计框架中的杂项参数来考虑某些缺失的测量值。我们采用迭代坐标下降算法来开发一种有效的方法来最小化相应的 MAP 代价函数。模拟和实验数据集的重建结果表明,与 FBP 和 SIRT 重建相比,该方法具有优越性,能够显著抑制伪影并增强对比度。