Suppr超能文献

非肌肉浸润性膀胱癌的基因表达分析揭示了可变剪接和 Tp53 状态的作用。

Gene Expression Analyses in Non Muscle Invasive Bladder Cancer Reveals a Role for Alternative Splicing and Tp53 Status.

机构信息

Molecular Oncology Unit, CIEMAT, Avda Complutense 40, 28040, Madrid, Spain.

Biomedical Research Institute, Hospital Universitario 12 de Octubre, Avda Córdoba s/n, 28041, Madrid, Spain.

出版信息

Sci Rep. 2019 Jul 17;9(1):10362. doi: 10.1038/s41598-019-46652-4.

Abstract

Non-muscle invasive bladder cancer (NMIBC) represents a crucial problem for the national health care systems due to its high rates of recurrence and the consequent need of frequent follow-ups. Here, gene expression analyses in patients diagnosed as NMIBC were performed to determine those molecular pathways involved in tumor initiation, finding that both MYC and E2F are up regulated and helps to tumor initiation and progression. Our results also support an important involvement of alternative splicing events, modifying key pathways to favour bladder tumor evolution. Finally, since MDM2 showed differential exon usage, mutations in TP53 and its protein expression have been also studied in the same patients. Our data support that recurrence is epigenetically mediated and favoured by an increase protein expression of TP53, which appears more frequently mutated in advanced stages and grades, being associated to a worse prognosis. Therefore, TP53 mutational status could be used as a potential biomarker in the first stages of NMIBC to predict recurrence and prognosis.

摘要

非肌肉浸润性膀胱癌(NMIBC)由于其高复发率以及随之而来的频繁随访需求,成为国家医疗保健系统的一个重要问题。在这里,对诊断为 NMIBC 的患者进行了基因表达分析,以确定参与肿瘤发生的分子途径,结果发现 MYC 和 E2F 均上调,并有助于肿瘤的发生和进展。我们的结果还支持替代性剪接事件的重要参与,这些事件改变了关键途径,有利于膀胱癌的演变。最后,由于 MDM2 显示出不同的外显子使用,因此在相同患者中还研究了 TP53 的突变及其蛋白表达。我们的数据支持复发是由表观遗传介导的,并且由 TP53 的蛋白表达增加所促进,TP53 在晚期和高级别中更频繁地发生突变,与预后不良相关。因此,TP53 突变状态可作为 NMIBC 早期阶段的潜在生物标志物,用于预测复发和预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b19a/6637137/dca24c905544/41598_2019_46652_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验