Suppr超能文献

基于席夫碱的化学传感器对铝阳离子的选择性传感机制理解:一种理论方法。

Understanding the Selective-Sensing Mechanism of Al Cation by a Chemical Sensor Based on Schiff Base: A Theoretical Approach.

作者信息

Treto-Suárez Manuel A, Hidalgo-Rosa Yoan, Schott Eduardo, Zarate Ximena, Páez-Hernández Dayan

机构信息

Departamento de química inorgánica, UC Energy Research Center, Facultad de Química y de Farmacia , Pontificia Universidad Católica de Chile , Vicuña Mackenna 4860, Macul , Santiago 7820436 , Chile.

Millennium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC) , Santiago 7810000 , Chile.

出版信息

J Phys Chem A. 2019 Aug 15;123(32):6970-6977. doi: 10.1021/acs.jpca.9b03366. Epub 2019 Aug 1.

Abstract

A methodology that allows us to explain the experimental behavior of a turn-on luminescent chemosensor is proposed and verified in 1-[(1-1,2,4-triazole-3-ylimino)-methyl]-naphthalene-2-ol] (L1), selective to Al cations. This sensor increases its emission when interacting with ions upon excitation at 442 nm, which is denoted as the chelation-enhanced fluorescence effect. Photoinduced electron transfer is responsible for the fluorescence quenching in L1 at 335 nm, in Ni/L1 at 385 nm, and in Zn/L1 at 378 nm. In Ni/L, ligand-to-metal charge transfer (LMCT), from the molecular orbital of the ligand to the Ni 3d orbital, can contribute to the quenching of fluorescence. Based on oscillator strength, the highest luminescence intensity of L1 at 401 nm and that of Al/L1 at 494 nm in relation to the others is evidenced. The consideration of the relative energies of the excited states and the calculation of the rate and lifetime of the electron transfer deactivation are necessary to get a good description of the sensor.

摘要

我们提出了一种能够解释开启型发光化学传感器实验行为的方法,并在对铝阳离子具有选择性的1-[(1-1,2,4-三唑-3-基亚氨基)-甲基]-萘-2-醇(L1)中进行了验证。该传感器在442 nm激发下与离子相互作用时会增强其发射,这被称为螯合增强荧光效应。光诱导电子转移导致L1在335 nm、Ni/L1在385 nm以及Zn/L1在378 nm处的荧光猝灭。在Ni/L中,从配体分子轨道到Ni 3d轨道的配体-金属电荷转移(LMCT)会导致荧光猝灭。基于振子强度,证明了L1在401 nm处以及Al/L1在494 nm处相对于其他情况具有最高的发光强度。为了对该传感器有一个良好的描述,需要考虑激发态的相对能量以及计算电子转移失活的速率和寿命。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验