Suppr超能文献

用 EEG 探测“默认网络干扰假说”:聚焦注意力的 RDoC 方法。

Probing the "Default Network Interference Hypothesis" With EEG: An RDoC Approach Focused on Attention.

机构信息

1 Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands.

2 Research Institute Brainclinics, Nijmegen, the Netherlands.

出版信息

Clin EEG Neurosci. 2019 Nov;50(6):404-412. doi: 10.1177/1550059419864461. Epub 2019 Jul 19.

Abstract

Studies have shown that specific networks (default mode network [DMN] and task positive network [TPN]) activate in an anticorrelated manner when sustaining attention. Related EEG studies are scarce and often lack behavioral validation. We performed independent component analysis (ICA) across different frequencies (source-level), using eLORETA-ICA, to extract brain-network activity during resting-state and sustained attention. We applied ICA to the , similar to functional magnetic resonance imaging methods of analyses. The obtained components were contrasted and correlated to attentional performance (omission errors) in a large sample of healthy subjects (N = 1397). We identified one component that robustly correlated with inattention and reflected an anticorrelation of delta activity in the anterior cingulate and precuneus, and delta and theta activity in the medial prefrontal cortex and with alpha and gamma activity in medial frontal regions. We then compared this component between optimal and suboptimal attentional performers. For the latter group, we observed a greater change in component loading between resting-state and sustained attention than for the optimal performers. Following the National Institute of Mental Health Research Domain Criteria (RDoC) approach, we prospectively replicated and validated these findings in subjects with attention deficit/hyperactivity disorder. Our results provide further support for the "default mode interference hypothesis."

摘要

研究表明,在维持注意力时,特定的网络(默认模式网络 [DMN] 和任务正网络 [TPN])以反相关的方式激活。相关的 EEG 研究很少,并且经常缺乏行为验证。我们使用 eLORETA-ICA 在不同频率(源水平)上进行独立成分分析 (ICA),以提取静息状态和维持注意力期间的大脑网络活动。我们在 中应用了 ICA,类似于功能磁共振成像的分析方法。我们将获得的成分进行对比,并与大量健康受试者(N = 1397)的注意力表现(遗漏错误)相关联。我们确定了一个与注意力不集中密切相关的成分,反映了扣带回前部和楔前叶中 delta 活动的反相关,以及中前额叶中 delta 和 theta 活动与中额区 alpha 和 gamma 活动的反相关。然后,我们在最佳和次佳注意力表现者之间比较了这个成分。对于后者组,我们观察到在静息状态和维持注意力之间,成分负荷的变化大于最佳表现者。根据国家心理健康研究所研究领域标准 (RDoC) 方法,我们在注意力缺陷/多动障碍患者中前瞻性地复制和验证了这些发现。我们的结果进一步支持了“默认模式干扰假说”。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验