Bustamante Mauricio, Ahlers Markus
Niels Bohr International Academy and Discovery Centre, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark.
DARK, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark.
Phys Rev Lett. 2019 Jun 21;122(24):241101. doi: 10.1103/PhysRevLett.122.241101.
The sources and production mechanisms of high-energy astrophysical neutrinos are largely unknown. A promising opportunity for progress lies in the study of neutrino flavor composition, i.e., the proportion of each flavor in the flux of neutrinos, which reflects the physical conditions at the sources. To seize it, we introduce a Bayesian method that infers the flavor composition at the neutrino sources based on the flavor composition measured at Earth. We find that the present data from the IceCube neutrino telescope favor neutrino production via the decay of high-energy pions and rule out production via the decay of neutrons. In the future, improved measurements of flavor composition and mixing parameters may single out the production mechanism with high significance.
高能天体物理中微子的来源和产生机制在很大程度上尚不清楚。取得进展的一个有希望的机会在于对中微子味成分的研究,即中微子通量中每种味的比例,它反映了源处的物理条件。为了抓住这个机会,我们引入了一种贝叶斯方法,该方法根据在地球上测量到的味成分来推断中微子源处的味成分。我们发现,冰立方中微子望远镜目前的数据支持通过高能π介子衰变产生中微子,并排除了通过中子衰变产生中微子的可能性。未来,对味成分和混合参数的改进测量可能会以高显著性确定产生机制。