Muniz-Miranda Francesco, De Bruecker Liesbeth, De Vos Arthur, Vanden Bussche Flore, Stevens Christian V, Van Der Voort Pascal, Lejaeghere Kurt, Van Speybroeck Veronique
Center for Molecular Modeling (CMM) , Ghent University , Technologiepark 46 , 9052 Zwijnaarde , Belgium.
Research Group SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering , Ghent University , Campus Coupure, Coupure Links 653 bl. B , 9000 Gent , Belgium.
J Phys Chem A. 2019 Aug 15;123(32):6854-6867. doi: 10.1021/acs.jpca.9b05216. Epub 2019 Aug 1.
Heterogenization of RuL complexes on a support with proper anchor points provides a route toward design of green catalysts. In this paper, Ru(II) polypyridyl complexes are investigated with the aim to unravel the influence on the photocatalytic properties of varying nitrogen content in the ligands and of embedding the complex in a triazine-based covalent organic framework. To provide fundamental insight into the electronic mechanisms underlying this behavior, a computational study is performed. Both the ground and excited state properties of isolated and anchored ruthenium complexes are theoretically investigated by means of density functional theory and time-dependent density functional theory. Varying the ligands among 2,2'-bipyridine, 2,2'-bipyrimidine, and 2,2'-bipyrazine allows us to tune to a certain extent the optical gaps and the metal to ligand charge transfer excitations. Heterogenization of the complex within a CTF support has a significant effect on the nature and energy of the electronic transitions. The allowed transitions are significantly red-shifted toward the near IR region and involve transitions from states localized on the CTF toward ligands attached to the ruthenium. The study shows how variations in ligands and anchoring on proper supports allows us to increase the range of wavelengths that may be exploited for photocatalysis.
在具有合适锚点的载体上使钌配体络合物异质化,为设计绿色催化剂提供了一条途径。在本文中,对钌(II)多吡啶络合物进行了研究,旨在揭示配体中不同氮含量以及将络合物嵌入基于三嗪的共价有机框架对光催化性能的影响。为了深入了解这种行为背后的电子机制,进行了一项计算研究。通过密度泛函理论和含时密度泛函理论,从理论上研究了孤立和锚定的钌络合物的基态和激发态性质。在2,2'-联吡啶、2,2'-联嘧啶和2,2'-联吡嗪之间改变配体,使我们能够在一定程度上调节光学能隙和金属到配体的电荷转移激发。络合物在共价三嗪框架(CTF)载体中的异质化对电子跃迁的性质和能量有显著影响。允许的跃迁明显红移至近红外区域,并且涉及从CTF上的局域态向与钌相连的配体的跃迁。该研究表明,配体的变化以及在合适载体上的锚定如何使我们能够扩大可用于光催化的波长范围。