Suppr超能文献

公立医院效率的集成 K-均值聚类与数据包络分析。

Integrated k-means clustering with data envelopment analysis of public hospital efficiency.

机构信息

Faculty of Economics and Administrative Sciences (FEAS), Department of Health Care Management, Hacettepe University, 06800, Beytepe, Ankara, Turkey.

出版信息

Health Care Manag Sci. 2020 Sep;23(3):325-338. doi: 10.1007/s10729-019-09491-3. Epub 2019 Jul 19.

Abstract

The goal of this study is to integrate k-means clustering with data envelopment analysis to examine technical efficiencies in public hospitals in Turkey. A two-step analysis procedure involving provinces and public hospitals is applied in this study. The first step examines similar provinces in terms of welfare state indicators by using k-means clustering and silhouette (Sil) cluster validity index measures. Then, the efficiencies of public hospitals in different groups of provinces are determined. The data are taken from the Turkish Statistical Institute and the 2017 Public Hospitals Statistical Year Book for eighty-one provinces and 688 public hospitals. Study results show that, relative to similarities of welfare state indicators, there are five province groups (Sil = .58). The number of technically inefficient public hospitals is greater than the number of technically efficient public hospitals in all groups. Study results emphasize that incorporated methodology of k-means clustering with data envelopment analysis is useful to identify efficiencies of public hospitals located in provinces that have similar welfare status.

摘要

本研究旨在将 K 均值聚类与数据包络分析相结合,以考察土耳其公立医院的技术效率。本研究采用了涉及省份和公立医院的两步分析程序。第一步是通过 K 均值聚类和轮廓(Sil)聚类有效性指数来检查福利国家指标相似的省份。然后,确定不同省份组公立医院的效率。数据来自土耳其统计局和 2017 年公立医院统计年鉴,涉及 81 个省份和 688 家公立医院。研究结果表明,相对于福利国家指标的相似性,存在五个省份组(Sil=0.58)。所有组中技术效率低下的公立医院数量均大于技术效率高的公立医院数量。研究结果强调,将 K 均值聚类与数据包络分析相结合的方法可用于识别具有相似福利状况的省份中公立医院的效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验