Suppr超能文献

长期的氮施肥失衡会影响土壤微生物对氮的获取和转化。

Long-term N fertilization imbalances potential N acquisition and transformations by soil microbes.

机构信息

University of Illinois, Department of Crop Sciences, Turner Hall, 1102 S. Goodwin Ave., Urbana, IL 61801, USA.

University of Illinois, Department of Animal Sciences, 30 ASL, 127 W. Gregory Dr., Urbana, IL 61801, USA.

出版信息

Sci Total Environ. 2019 Nov 15;691:562-571. doi: 10.1016/j.scitotenv.2019.07.154. Epub 2019 Jul 11.

Abstract

Nitrogen (N) fertilization in agricultural soils has been receiving worldwide attention due to its detrimental effects on ecosystem services, particularly on microbial N transformation. However, few studies provide a complete picture of N-fertilization effects on the N transformation cycle within a single agricultural ecosystem. Here, we explored the main steps of the microbial N cycle, using targeted gene abundances as proxies, in relation to soil properties, following 35 years of N-fertilization at increasing rates (0, 202 and 269 kg N/ha) in continuous corn (Zea mays L.) and corn-soybean [Glycine max (L.) Merr.] rotations. We used real-time quantitative polymerase chain reaction (qPCR) for the quantification of phylogenetic groups and functional gene screening of the soil microbial communities, including genes encoding critical enzymes of the microbial N cycle: nifH (N fixation), amoA (first step of nitrification), nirK and nirS (first step of denitrification), and nosZ (last step of denitrification). Our results showed that long term N-fertilization increased the abundance of fungal communities likely related to decreases in pH, and an enrichment of Al and Fe in exchange sites at the expense of critical macro and micronutrients. At the same time, long term N-fertilization damaged potential biological N fixation by significantly reducing the abundance of nifH genes in both continuous and rotated corn systems, while accelerating potential nitrification activities under continuous corn by increasing the abundance of bacterial amoA. Fertilization did not affect the abundance of denitrifying groups. Altogether, these results suggest that N fertilization in corn crops potentially decreases N acquisition by free-living soil microbes and stimulates nitrification activities, thus creating a vicious loop that makes the overall agricultural system even more dependent on external N inputs.

摘要

农业土壤中的氮(N)施肥由于对生态系统服务,特别是对微生物 N 转化的不利影响而受到全球关注。然而,很少有研究提供在单个农业生态系统中完整描述 N 施肥对 N 转化循环的影响。在这里,我们通过增加氮(N)施肥(0、202 和 269 kg/ha),在连续种植玉米(Zea mays L.)和玉米-大豆(Glycine max(L.)Merr.)轮作中,研究了微生物 N 循环的主要步骤,使用靶向基因丰度作为土壤性质的指标,这与 35 年的氮施肥有关。我们使用实时定量聚合酶链反应(qPCR)对土壤微生物群落的系统发育群和功能基因筛选进行定量,包括编码微生物 N 循环关键酶的基因:nifH(固氮)、amoA(硝化作用第一步)、nirK 和 nirS(反硝化作用第一步),以及 nosZ(反硝化作用最后一步)。我们的结果表明,长期 N 施肥增加了真菌群落的丰度,这可能与 pH 值下降以及交换位点中 Al 和 Fe 的富集有关,而关键的大量和微量元素的消耗。与此同时,长期 N 施肥通过显著降低连续和轮作玉米系统中 nifH 基因的丰度,同时通过增加细菌 amoA 的丰度来加速潜在的硝化作用,从而损害了潜在的生物固氮作用。施肥对反硝化菌的丰度没有影响。总的来说,这些结果表明,玉米作物中的 N 施肥可能会降低土壤微生物自由生活固氮的氮获取,并刺激硝化作用,从而形成一个恶性循环,使整个农业系统更加依赖外部 N 输入。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验