Jones R E, Tucker W C, Mills M J L, Mukerjee S
Sandia National Laboratories, Livermore, California 94551, USA.
Northeastern University, Boston, Massachusetts 02115, USA.
J Chem Phys. 2019 Jul 21;151(3):034702. doi: 10.1063/1.5097609.
In this work, we examine metal electrode-ionomer electrolyte systems at high voltage (negative surface charge) and at high pH to assess factors that influence hydrogen production efficiency. We simulate the hydrogen evolution electrode interface investigated experimentally in the work of Bates et al. [J. Phys. Chem. C 119, 5467 (2015)] using a combination of first principles calculations and classical molecular dynamics. With this detailed molecular information, we explore the hypotheses posed in the work of Bates et al. In particular, we examine the response of the system to increased bias voltage and oxide coverage in terms of the potential profile, changes in solvation and species concentrations away from the electrode, surface concentrations, and orientation of water at reactive surface sites. We discuss this response in the context of hydrogen production.
在这项工作中,我们研究了处于高电压(负表面电荷)和高pH值条件下的金属电极 - 离聚物电解质体系,以评估影响析氢效率的因素。我们结合第一性原理计算和经典分子动力学,模拟了贝茨等人[《物理化学杂志C》119, 5467 (2015)]实验研究的析氢电极界面。借助这些详细的分子信息,我们探究了贝茨等人工作中提出的假设。具体而言,我们从电势分布、远离电极处的溶剂化变化和物种浓度、表面浓度以及活性表面位点处水(分子)的取向等方面,研究了体系对增加的偏置电压和氧化物覆盖的响应。我们在析氢的背景下讨论这种响应。