Suppr超能文献

Influence of chirality on fluorescence and resonance energy transfer.

作者信息

Forbes Kayn A, Bradshaw David S, Andrews David L

机构信息

School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom.

出版信息

J Chem Phys. 2019 Jul 21;151(3):034305. doi: 10.1063/1.5109844.

Abstract

Electronically excited molecules frequently exhibit two distinctive decay mechanisms that rapidly generate optical emission: one is direct fluorescence and the other is energy transfer to a neighboring component. In the latter, the process leading to the ensuing "indirect" fluorescence is known as FRET, or fluorescence resonance energy transfer. For chiral molecules, both fluorescence and FRET exhibit discriminatory behavior with respect to optical and material handedness. While chiral effects such as circular dichroism are well known, as too is chiral discrimination for FRET in isolation, this article presents a study on a stepwise mechanism that involves both. Chirally sensitive processes follow excitation through the absorption of circularly polarized light and are manifest in either direct or indirect fluorescence. Following recent studies setting down the symmetry principles, this analysis provides a rigorous, quantum outlook that complements and expands on these works. Circumventing expressions that contain complicated tensorial components, our results are amenable for determining representative numerical values for the relative importance of the various coupling processes. We discover that circular dichroism exerts a major influence on both fluorescence and FRET, and resolving the engagement of chirality in each component reveals the distinct roles of absorption and emission by, and between, donor and acceptor pairs. It emerges that chiral discrimination in the FRET stage is not, as might have been expected, the main arbiter in the stepwise mechanism. In the concluding discussion on various concepts, attention is focused on the validity of helicity transfer in FRET.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验