College of Engineering, Mathematics and Physical Sciences, University of Exeter, Harrison Building, North Park Rd, Exeter EX4 4QF, UK.
Center for Neural Science, New York University, 4 Washington Place, 10003 New York, NY, United States; Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, 10012 New York, NY, United States.
Curr Opin Neurobiol. 2019 Oct;58:46-53. doi: 10.1016/j.conb.2019.06.009. Epub 2019 Jul 19.
Audition is by nature dynamic, from brainstem processing on sub-millisecond time scales, to segregating and tracking sound sources with changing features, to the pleasure of listening to music and the satisfaction of getting the beat. We review recent advances from computational models of sound localization, of auditory stream segregation and of beat perception/generation. A wealth of behavioral, electrophysiological and imaging studies shed light on these processes, typically with synthesized sounds having regular temporal structure. Computational models integrate knowledge from different experimental fields and at different levels of description. We advocate a neuromechanistic modeling approach that incorporates knowledge of the auditory system from various fields, that utilizes plausible neural mechanisms, and that bridges our understanding across disciplines.
听觉本质上是动态的,从亚毫秒级别的脑干处理,到对具有变化特征的声源进行分离和跟踪,再到聆听音乐的乐趣和跟上节奏的满足感。我们回顾了声音定位、听觉流分离和节拍感知/生成的计算模型的最新进展。大量的行为、电生理学和成像研究揭示了这些过程,这些研究通常使用具有规则时间结构的合成声音。计算模型整合了来自不同实验领域和不同描述层次的知识。我们提倡一种神经力学建模方法,该方法将来自不同领域的听觉系统知识相结合,利用合理的神经机制,并在不同学科之间架起我们的理解桥梁。