Sussex Neuroscience, School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK.
Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Brasília Avenue, Doca de Pedrouços, 1400-038 Lisbon, Portugal.
Curr Biol. 2019 Aug 19;29(16):2665-2675.e4. doi: 10.1016/j.cub.2019.06.082. Epub 2019 Jul 18.
Movement is the main output of the nervous system. It emerges during development to become a highly coordinated physiological process essential to survival and adaptation of the organism to the environment. Similar movements can be observed in morphologically distinct developmental stages of an organism, but it is currently unclear whether or not these movements have a common molecular cellular basis. Here we explore this problem in Drosophila, focusing on the roles played by the microRNA (miRNA) locus miR-iab4/8, which we previously showed to be essential for the normal corrective response displayed by the fruit fly larva when turned upside down (self-righting). Our study shows that miR-iab4 is required for normal self-righting across all three Drosophila larval stages. Unexpectedly, we also discover that this miRNA is essential for normal self-righting behavior in the adult fly, an organism with different morphology, neural constitution, and biomechanics. Through the combination of gene expression, optical imaging, and quantitative behavioral approaches, we provide evidence that miR-iab4 exerts its effects on adult self-righting behavior in part through repression of the Hox gene Ultrabithorax (Ubx) in a specific set of adult motor neurons, the NB2-3/lin15 neurons. Our results show that miRNA controls the function, rather than the morphology, of these neurons and demonstrate that post-developmental changes in Hox gene expression can modulate behavior in the adult. Our work reveals that a common miRNA-Hox genetic module can be re-deployed in different neurons to control functionally equivalent movements in biomechanically distinct organisms and describes a novel post-developmental role of the Hox genes in adult neural function.
运动是神经系统的主要输出。它在发育过程中出现,成为生存和适应生物体环境的高度协调的生理过程的关键。在生物体形态不同的发育阶段,可以观察到相似的运动,但目前尚不清楚这些运动是否具有共同的分子细胞基础。在这里,我们在果蝇中探索这个问题,重点研究 microRNA (miRNA) 基因座 miR-iab4/8 的作用,我们之前的研究表明该基因座对于果蝇幼虫在被颠倒时(自我扶正)表现出的正常纠正反应是必需的。我们的研究表明,miR-iab4 对于所有三个果蝇幼虫阶段的正常自我扶正都是必需的。出乎意料的是,我们还发现该 miRNA 对于成年果蝇的正常自我扶正行为也是必需的,成年果蝇具有不同的形态、神经结构和生物力学。通过基因表达、光学成像和定量行为方法的结合,我们提供了证据表明 miR-iab4 通过抑制特定一组成年运动神经元(NB2-3/lin15 神经元)中的 Hox 基因 Ultrabithorax (Ubx) 来发挥其对成年自我扶正行为的作用。我们的结果表明,miRNA 控制这些神经元的功能,而不是形态,并且表明 Hox 基因在成年期的表达变化可以调节行为。我们的工作揭示了一个共同的 miRNA-Hox 遗传模块可以在不同的神经元中重新部署,以控制在具有不同生物力学特征的生物体中具有相同功能的运动,并描述了 Hox 基因在成年神经功能中的新的发育后作用。