Suppr超能文献

非马尔可夫朗之万方程的福克-普朗克表示:应用于延迟系统。

Fokker-Planck representations of non-Markov Langevin equations: application to delayed systems.

作者信息

Giuggioli Luca, Neu Zohar

机构信息

Department of Engineering Mathematics, University of Bristol, Woodland Road, Bristol BS8 1UB, UK.

Bristol Centre for Complexity Sciences, University of Bristol, Woodland Road, Bristol BS8 1UB, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2019 Sep 9;377(2153):20180131. doi: 10.1098/rsta.2018.0131. Epub 2019 Jul 22.

Abstract

Noise and time delays, or history-dependent processes, play an integral part in many natural and man-made systems. The resulting interplay between random fluctuations and time non-locality are essential features of the emerging complex dynamics in non-Markov systems. While stochastic differential equations in the form of Langevin equations with additive noise for such systems exist, the corresponding probabilistic formalism is yet to be developed. Here we introduce such a framework via an infinite hierarchy of coupled Fokker-Planck equations for the n-time probability distribution. When the non-Markov Langevin equation is linear, we show how the hierarchy can be truncated at n = 2 by converting the time non-local Langevin equation to a time-local one with additive coloured noise. We compare the resulting Fokker-Planck equations to an earlier version, solve them analytically and analyse the temporal features of the probability distributions that would allow to distinguish between Markov and non-Markov features. This article is part of the theme issue 'Nonlinear dynamics of delay systems'.

摘要

噪声和时间延迟,即历史依赖过程,在许多自然和人造系统中都起着不可或缺的作用。随机涨落与时间非局域性之间由此产生的相互作用是非马尔可夫系统中新兴复杂动力学的基本特征。虽然存在针对此类系统的带有加性噪声的朗之万方程形式的随机微分方程,但相应的概率形式体系尚未得到发展。在此,我们通过用于n时间概率分布的耦合福克 - 普朗克方程的无穷层级引入这样一个框架。当非马尔可夫朗之万方程为线性时,我们展示了如何通过将时间非局域朗之万方程转换为带有加性有色噪声的时间局域方程,在n = 2时截断该层级。我们将所得的福克 - 普朗克方程与早期版本进行比较,对其进行解析求解,并分析概率分布的时间特征,这些特征将有助于区分马尔可夫和非马尔可夫特征。本文是主题为“延迟系统的非线性动力学”的特刊的一部分。

相似文献

3
Nonlinear stochastic modelling with Langevin regression.基于朗之万回归的非线性随机建模
Proc Math Phys Eng Sci. 2021 Jun;477(2250):20210092. doi: 10.1098/rspa.2021.0092. Epub 2021 Jun 2.
4
Computing generalized Langevin equations and generalized Fokker-Planck equations.计算广义朗之万方程和广义福克-普朗克方程。
Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):10884-9. doi: 10.1073/pnas.0902633106. Epub 2009 Jun 19.

引用本文的文献

1
Nonlinear dynamics of delay systems: an overview.延迟系统的非线性动力学:综述
Philos Trans A Math Phys Eng Sci. 2019 Sep 9;377(2153):20180389. doi: 10.1098/rsta.2018.0389. Epub 2019 Jul 22.

本文引用的文献

1
Deep learning in spiking neural networks.深度学习在尖峰神经网络中的应用。
Neural Netw. 2019 Mar;111:47-63. doi: 10.1016/j.neunet.2018.12.002. Epub 2018 Dec 18.
4
Time-Delayed Models of Gene Regulatory Networks.基因调控网络的时间延迟模型
Comput Math Methods Med. 2015;2015:347273. doi: 10.1155/2015/347273. Epub 2015 Oct 20.
5
Memory Effects on Movement Behavior in Animal Foraging.记忆对动物觅食中运动行为的影响。
PLoS One. 2015 Aug 19;10(8):e0136057. doi: 10.1371/journal.pone.0136057. eCollection 2015.
8
Stigmergy, collective actions, and animal social spacing.痕迹信息素、集体行动和动物社会隔离。
Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):16904-9. doi: 10.1073/pnas.1307071110. Epub 2013 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验