Suppr超能文献

连续时间时变策略迭代

Continuous-Time Time-Varying Policy Iteration.

作者信息

Wei Qinglai, Liao Zehua, Yang Zhanyu, Li Benkai, Liu Derong

出版信息

IEEE Trans Cybern. 2020 Dec;50(12):4958-4971. doi: 10.1109/TCYB.2019.2926631. Epub 2020 Dec 3.

Abstract

A novel policy iteration algorithm, called the continuous-time time-varying (CTTV) policy iteration algorithm, is presented in this paper to obtain the optimal control laws for infinite horizon CTTV nonlinear systems. The adaptive dynamic programming (ADP) technique is utilized to obtain the iterative control laws for the optimization of the performance index function. The properties of the CTTV policy iteration algorithm are analyzed. Monotonicity, convergence, and optimality of the iterative value function have been analyzed, and the iterative value function can be proven to monotonically converge to the optimal solution of the Hamilton-Jacobi-Bellman (HJB) equation. Furthermore, the iterative control law is guaranteed to be admissible to stabilize the nonlinear systems. In the implementation of the presented CTTV policy algorithm, the approximate iterative control laws and iterative value function are obtained by neural networks. Finally, the numerical results are given to verify the effectiveness of the presented method.

摘要

本文提出了一种新颖的策略迭代算法,称为连续时间时变(CTTV)策略迭代算法,用于获得无限时域CTTV非线性系统的最优控制律。利用自适应动态规划(ADP)技术来获得用于性能指标函数优化的迭代控制律。分析了CTTV策略迭代算法的性质。对迭代值函数的单调性、收敛性和最优性进行了分析,并且可以证明迭代值函数单调收敛到汉密尔顿-雅可比-贝尔曼(HJB)方程的最优解。此外,保证迭代控制律可用于稳定非线性系统。在所提出的CTTV策略算法的实现中,通过神经网络获得近似迭代控制律和迭代值函数。最后,给出数值结果以验证所提方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验