Magdău Ioan B, Mead Griffin J, Blake Geoffrey A, Miller Thomas F
Division of Chemistry & Chemical Engineering , California Institute of Technology , Pasadena , California 91125 , United States.
Division of Geological & Planetary Sciences , California Institute of Technology , Pasadena , California 91125 , United States.
J Phys Chem A. 2019 Aug 22;123(33):7278-7287. doi: 10.1021/acs.jpca.9b05165. Epub 2019 Aug 8.
Nonlinear THz-THz-Raman (TTR) liquid spectroscopy offers new possibilities for studying and understanding condensed-phase chemical dynamics. Although TTR spectra carry rich information about the systems under study, the response is encoded in a three-point correlation function comprising of both dipole and polarizability elements. Theoretical methods are necessary for the interpretation of the experimental results. In this work, we study the liquid-phase dynamics of bromoform, a polarizable molecule with a strong TTR response. Previous work based on reduced density matrix (RDM) simulations suggests that unusually large multiquanta dipole matrix elements are needed to understand the measured spectrum of bromoform. Here, we demonstrate that a self-consistent definition of the time coordinates with respect to the reference pulse leads to a simplified experimental spectrum. Furthermore, we analytically derive a parametrization for the RDM model by integrating the dipole and polarizability elements to the 4th order in the normal modes, and we enforce inversion symmetry in the calculations by numerically canceling the components of the response that are even with respect to the field. The resulting analysis eliminates the need to invoke large multiquanta dipole matrix elements to fit the experimental spectrum; instead, the experimental spectrum is recovered using RDM simulations with dipole matrix parameters that are in agreement with independent ab initio calculations. The fundamental interpretation of the TTR signatures in terms of coupled intramolecular vibrational modes remains unchanged from the previous work.
非线性太赫兹-太赫兹-拉曼(TTR)液体光谱学为研究和理解凝聚相化学动力学提供了新的可能性。尽管TTR光谱携带了有关所研究系统的丰富信息,但响应是编码在一个由偶极子和极化率元素组成的三点相关函数中的。理论方法对于解释实验结果是必要的。在这项工作中,我们研究了溴仿的液相动力学,溴仿是一种具有强烈TTR响应的可极化分子。先前基于约化密度矩阵(RDM)模拟的工作表明,需要异常大的多量子偶极子矩阵元素才能理解所测量的溴仿光谱。在这里,我们证明相对于参考脉冲对时间坐标进行自洽定义会导致简化的实验光谱。此外,我们通过在正常模式下将偶极子和极化率元素积分到四阶来解析推导RDM模型的参数化,并通过数值抵消相对于场为偶数的响应分量在计算中强制实现反演对称性。所得分析不再需要调用大的多量子偶极子矩阵元素来拟合实验光谱;相反,使用与独立的从头算计算一致的偶极子矩阵参数的RDM模拟恢复了实验光谱。就耦合的分子内振动模式而言,TTR特征的基本解释与先前的工作保持不变。