IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Nov;66(11):1777-1785. doi: 10.1109/TUFFC.2019.2928170. Epub 2019 Jul 11.
This paper presents a novel method to increase the bandwidth (BW) of airborne capacitive micromachined ultrasonic transducers (CMUTs). This method introduces a gaseous squeeze film as a damping mechanism, which induces a stiffening effect that lowers the pull-in voltage and improves the sensitivity. The optimal behavior of this stiffening effect versus the damping mechanism can be controlled by creating optimized fluidic trenches of various heights within the gap. The fractional BW can be controlled from 0.89% to 8.1% by adjusting the trench height while lowering the pull-in voltage to less than 54 V at the gap height of 1.0 [Formula: see text]. To achieve the largest sensitivity and lowest pull-in voltage at a given BW, we have developed a multi-parameter optimization method to adjust all combinations of design parameters. A novel multiple hard-mask process flow has been developed to enable fabrication of CMUTs with different cavity and trench heights on the same wafer. These devices provided an equivalent noise pressure level of 4.77 μ Pa/ √ Hz with 6.24-kHz BW for 7.6- [Formula: see text] deep fluidic trenches and 4.88 μ Pa/ √ Hz with 7.48-kHz BW for 14.3- [Formula: see text] deep fluidic trenches. This demonstration of the wide-BW CMUTs with high sensitivity and low pull-in voltage makes them applicable to medical and thermoacoustic imaging, nondestructive testing, and ultrasonic flow metering.
本文提出了一种提高机载电容式微机械超声换能器(CMUT)带宽(BW)的新方法。该方法引入了一种气体挤压膜作为阻尼机制,从而产生了一种增强效果,降低了拉入电压并提高了灵敏度。通过在间隙内创建各种高度的优化流体槽,可以控制这种增强效果与阻尼机制的最佳行为。通过调整槽的高度,可以将分数 BW 从 0.89%控制到 8.1%,同时将拉入电压降低到间隙高度为 1.0 [Formula: see text]时小于 54 V。为了在给定 BW 下实现最大灵敏度和最低拉入电压,我们已经开发了一种多参数优化方法来调整所有设计参数的组合。已经开发了一种新的多硬掩模工艺流程,以能够在同一晶圆上制造具有不同腔体和槽高度的 CMUT。这些器件在 7.6- [Formula: see text]深的流体槽和 14.3- [Formula: see text]深的流体槽中提供了 6.24-kHz BW 的等效噪声压力水平为 4.77 μ Pa/ √ Hz,和 7.48-kHz BW 的等效噪声压力水平为 4.88 μ Pa/ √ Hz。这种具有高灵敏度和低拉入电压的宽 BW CMUT 的演示使其适用于医疗和热声成像、无损检测和超声波流量测量。