Wygant Ira O, Kupnik Mario, Windsor Jeffry C, Wright Wayne M, Wochner Mark S, Yaralioglu Goksen G, Hamilton Mark F, Khuri-Yakub Butrus T
Edward L Ginzton Laboratory, Stanford University, Stanford, CA, USA.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Jan;56(1):193-203. doi: 10.1109/TUFFC.2009.1019.
In this study, we examine the use of capacitive micromachined ultrasonic transducers (CMUTs) with vacuum- sealed cavities for transmitting directional sound with parametric arrays. We used finite element modeling to design CMUTs with 40-microm- and 60-microm-thick membranes to have resonance frequencies of 46 kHz and 54 kHz, respectively. The wafer bonding approach used to fabricate the CMUTs provides good control over device properties and the capability to fabricate CMUTs with large diameter membranes and deep cavities. Each CMUT is 8 cm in diameter and consists of 284 circular membranes. Each membrane is 4 mm in diameter. Characterization of the fabricated CMUTs shows they have center frequencies of 46 kHz and 55 kHz and 3 dB bandwidths of 1.9 kHz and 5.3 kHz for the 40-microm- and 60-microm-thick membrane devices, respectively. With dc bias voltages of 380 V and 350 V and an ac excitation of 200 V peak-to-peak, the CMUTs generate average sound pressure levels, normalized to the device's surface, of 135 dB and 129 dB (re 20 microPa), respectively. When used to generate 5 kHz sound with a parametric array, we measured sound at 3 m with a 6 dB beamwidth of 8.7 degrees and a sound pressure level of 58 dB. To understand how detector nonlinearity (e.g., the nonlinearity of the microphone used to make the sound level measurements) affects the measured sound pressure level, we made measurements with and without an acoustic low-pass filter placed in front of the microphone; the measured sound levels agree with numerical simulations of the pressure field. The results presented in this paper demonstrate that large-area CMUTs, which produce high-intensity ultrasound, can be fabricated for transmitting directional sound with parametric arrays.
在本研究中,我们研究了具有真空密封腔的电容式微机械超声换能器(CMUT)用于通过参量阵发射定向声的情况。我们使用有限元建模来设计具有40微米和60微米厚膜的CMUT,使其共振频率分别为46千赫和54千赫。用于制造CMUT的晶圆键合方法能够很好地控制器件特性,并具备制造具有大直径膜和深腔的CMUT的能力。每个CMUT的直径为8厘米,由284个圆形膜组成。每个膜的直径为4毫米。对制造出的CMUT的表征显示,对于40微米厚膜器件和60微米厚膜器件,它们的中心频率分别为46千赫和55千赫,3分贝带宽分别为1.9千赫和5.3千赫。在380伏和350伏的直流偏置电压以及200伏峰峰值的交流激励下,CMUT产生的平均声压级(相对于器件表面归一化)分别为135分贝和129分贝(参考20微帕)。当用于通过参量阵产生5千赫的声音时,我们在3米处测量到的声音具有8.7度的6分贝波束宽度和58分贝的声压级。为了了解探测器非线性(例如用于进行声级测量的麦克风的非线性)如何影响测量的声压级,我们在麦克风前放置和不放置声学低通滤波器的情况下进行了测量;测量的声级与压力场的数值模拟结果相符。本文给出的结果表明,可以制造出用于通过参量阵发射定向声的大面积、能产生高强度超声的CMUT。