Suppr超能文献

基于相关向量机的不完全训练数据集时间序列预测:两种比较方法。

Relevance Vector Machines-Based Time Series Prediction for Incomplete Training Dataset: Two Comparative Approaches.

出版信息

IEEE Trans Cybern. 2021 Aug;51(8):4298-4311. doi: 10.1109/TCYB.2019.2923434. Epub 2021 Aug 4.

Abstract

Considering that real-life time series mixed with missing points cannot be directly modeled by using most of the supervised machine learning methods, this paper proposes a novel time series prediction method based on relevance vector machines for incomplete training dataset. Given the regularity between the missing inputs and outputs constructed by the phase space reconstruction, this paper imputes the missing inputs during the learning process by the values of their corresponding missing outputs such that the elements in kernel matrix related to the missing inputs are capable of being updated. This paper designs two strategies to estimate the missing outputs. The first one is based on the expectation maximization formulation in which a joint posterior distribution over the missing outputs and the weights vector is derived as a multivariate Gaussian form, and the another maximizes the marginal likelihood function with respect to the missing outputs and other hyperparameters. To verify the performance of the two proposed computing strategies, two synthetic time series and a real-life dataset are employed. The results indicate that the proposed methods have robust and better performance over the other methods when dealing with incomplete time series training dataset.

摘要

鉴于大多数监督机器学习方法无法直接对包含缺失点的实际时间序列进行建模,本文提出了一种基于相关向量机的新方法,用于处理不完整的训练数据集。通过构建由相空间重构得到的缺失输入和输出之间的关系,本文在学习过程中通过缺失输出的值来插补缺失的输入,从而使与缺失输入相关的核矩阵元素能够得到更新。本文设计了两种策略来估计缺失的输出。第一种策略基于期望最大化公式,其中缺失输出和权重向量的联合后验分布被推导为多元高斯形式,另一种策略则针对缺失输出和其他超参数最大化边缘似然函数。为了验证这两种计算策略的性能,本文使用了两个合成时间序列和一个实际数据集。结果表明,在处理不完整的时间序列训练数据集时,所提出的方法比其他方法具有更稳健和更好的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验