Suppr超能文献

电子健康记录中药物-药物相互作用警报的结构化覆盖原因。

Structured override reasons for drug-drug interaction alerts in electronic health records.

机构信息

Division of General Internal Medicine and Primary Care, Brigham and Women's Hospital, Boston, Massachusetts, USA.

Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

J Am Med Inform Assoc. 2019 Oct 1;26(10):934-942. doi: 10.1093/jamia/ocz033.

Abstract

OBJECTIVE

The study sought to determine availability and use of structured override reasons for drug-drug interaction (DDI) alerts in electronic health records.

MATERIALS AND METHODS

We collected data on DDI alerts and override reasons from 10 clinical sites across the United States using a variety of electronic health records. We used a multistage iterative card sort method to categorize the override reasons from all sites and identified best practices.

RESULTS

Our methodology established 177 unique override reasons across the 10 sites. The number of coded override reasons at each site ranged from 3 to 100. Many sites offered override reasons not relevant to DDIs. Twelve categories of override reasons were identified. Three categories accounted for 78% of all overrides: "will monitor or take precautions," "not clinically significant," and "benefit outweighs risk."

DISCUSSION

We found wide variability in override reasons between sites and many opportunities to improve alerts. Some override reasons were irrelevant to DDIs. Many override reasons attested to a future action (eg, decreasing a dose or ordering monitoring tests), which requires an additional step after the alert is overridden, unless the alert is made actionable. Some override reasons deferred to another party, although override reasons often are not visible to other users. Many override reasons stated that the alert was inaccurate, suggesting that specificity of alerts could be improved.

CONCLUSIONS

Organizations should improve the options available to providers who choose to override DDI alerts. DDI alerting systems should be actionable and alerts should be tailored to the patient and drug pairs.

摘要

目的

本研究旨在确定电子病历中药物相互作用(DDI)警报的结构化覆盖原因的可用性和使用情况。

材料和方法

我们使用各种电子病历从美国 10 个临床站点收集了 DDI 警报和覆盖原因的数据。我们使用多阶段迭代卡片分类方法对所有站点的覆盖原因进行分类,并确定了最佳实践。

结果

我们的方法在 10 个站点确定了 177 个独特的覆盖原因。每个站点的编码覆盖原因数量从 3 到 100 不等。许多站点提供了与 DDI 无关的覆盖原因。确定了 12 个类别的覆盖原因。前三个类别占所有覆盖原因的 78%:“将监测或采取预防措施”、“无临床意义”和“利大于弊”。

讨论

我们发现站点之间的覆盖原因存在很大差异,并且有很多改进警报的机会。一些覆盖原因与 DDI 无关。许多覆盖原因证明了未来的行动(例如,减少剂量或订购监测测试),这需要在覆盖警报后再执行一个额外的步骤,除非警报可操作。一些覆盖原因推给了其他方,尽管覆盖原因通常对其他用户不可见。许多覆盖原因表示警报不准确,这表明可以提高警报的特异性。

结论

各组织应为选择覆盖 DDI 警报的提供者提供更好的选项。DDI 警报系统应具有可操作性,并且警报应针对患者和药物对进行定制。

相似文献

1
Structured override reasons for drug-drug interaction alerts in electronic health records.
J Am Med Inform Assoc. 2019 Oct 1;26(10):934-942. doi: 10.1093/jamia/ocz033.
3
Physicians' responses to computerized drug-drug interaction alerts for outpatients.
Comput Methods Programs Biomed. 2013 Jul;111(1):17-25. doi: 10.1016/j.cmpb.2013.02.006. Epub 2013 Apr 19.
5
Overrides of medication-related clinical decision support alerts in outpatients.
J Am Med Inform Assoc. 2014 May-Jun;21(3):487-91. doi: 10.1136/amiajnl-2013-001813. Epub 2013 Oct 28.
6
Optimization of drug-drug interaction alert rules in a pediatric hospital's electronic health record system using a visual analytics dashboard.
J Am Med Inform Assoc. 2015 Mar;22(2):361-9. doi: 10.1136/amiajnl-2013-002538. Epub 2014 Oct 15.
9
Are we heeding the warning signs? Examining providers' overrides of computerized drug-drug interaction alerts in primary care.
PLoS One. 2013 Dec 26;8(12):e85071. doi: 10.1371/journal.pone.0085071. eCollection 2013.
10
Turning off frequently overridden drug alerts: limited opportunities for doing it safely.
J Am Med Inform Assoc. 2008 Jul-Aug;15(4):439-48. doi: 10.1197/jamia.M2311. Epub 2008 Apr 24.

引用本文的文献

2
Allergy alerting and overrides for opioid analogues across two health systems.
BMJ Health Care Inform. 2025 May 25;32(1):e101259. doi: 10.1136/bmjhci-2024-101259.
3
User Actions within a Clinical Decision Support Alert for the Management of Hypertension in Chronic Kidney Disease.
Appl Clin Inform. 2025 May;16(3):595-603. doi: 10.1055/a-2554-3969. Epub 2025 Mar 17.
4
Interprofessional Evaluation of a Medication Clinical Decision Support System Prior to Implementation.
Appl Clin Inform. 2024 May;15(3):637-649. doi: 10.1055/s-0044-1787184. Epub 2024 Jul 31.
5
An Evaluation of Drug-Drug Interaction Alerts Produced by Clinical Decision Support Systems in a Tertiary Hospital.
Cureus. 2023 Aug 8;15(8):e43141. doi: 10.7759/cureus.43141. eCollection 2023 Aug.
10
OntoPharma: ontology based clinical decision support system to reduce medication prescribing errors.
BMC Med Inform Decis Mak. 2022 Sep 10;22(1):238. doi: 10.1186/s12911-022-01979-3.

本文引用的文献

1
Cranky comments: detecting clinical decision support malfunctions through free-text override reasons.
J Am Med Inform Assoc. 2019 Jan 1;26(1):37-43. doi: 10.1093/jamia/ocy139.
3
Efficacy and unintended consequences of hard-stop alerts in electronic health record systems: a systematic review.
J Am Med Inform Assoc. 2018 Nov 1;25(11):1556-1566. doi: 10.1093/jamia/ocy112.
4
Best practices for preventing malfunctions in rule-based clinical decision support alerts and reminders: Results of a Delphi study.
Int J Med Inform. 2018 Oct;118:78-85. doi: 10.1016/j.ijmedinf.2018.08.001. Epub 2018 Aug 2.
5
Reduced Effectiveness of Interruptive Drug-Drug Interaction Alerts after Conversion to a Commercial Electronic Health Record.
J Gen Intern Med. 2018 Nov;33(11):1868-1876. doi: 10.1007/s11606-018-4415-9. Epub 2018 May 15.
6
Determining Inappropriate Medication Alerts from "Inaccurate Warning" Overrides in the Intensive Care Unit.
Appl Clin Inform. 2018 Apr;9(2):268-274. doi: 10.1055/s-0038-1642608. Epub 2018 Apr 25.
7
Communication failure: analysis of prescribers' use of an internal free-text field on electronic prescriptions.
J Am Med Inform Assoc. 2018 Jun 1;25(6):709-714. doi: 10.1093/jamia/ocy003.
8
Clinical decision support alert malfunctions: analysis and empirically derived taxonomy.
J Am Med Inform Assoc. 2018 May 1;25(5):496-506. doi: 10.1093/jamia/ocx106.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验