Pinier Benoît, Mémin Etienne, Laizet Sylvain, Lewandowski Roger
Inria/IRMAR/U. Rennes I, Campus universitaire de Beaulieu, 35042 Rennes Cedex, France.
Department of Aeronautics, Imperial College London, South Kensington campus, London SW7 2AZ, United Kingdom.
Phys Rev E. 2019 Jun;99(6-1):063101. doi: 10.1103/PhysRevE.99.063101.
There is no satisfactory model to explain the mean velocity profile of the whole turbulent layer in canonical wall-bounded flows. In this paper, a mean velocity profile expression is proposed for wall-bounded turbulent flows based on a recently proposed stochastic representation of fluid flows dynamics. This original approach, called modeling under location uncertainty, introduces in a rigorous way a subgrid term generalizing the eddy-viscosity assumption and an eddy-induced advection term resulting from turbulence inhomogeneity. This latter term gives rise to a theoretically well-grounded model for the transitional zone between the viscous sublayer and the turbulent sublayer. An expression of the small-scale velocity component is also provided in the viscous zone. Numerical assessments of the results are provided for turbulent boundary layer flows, pipe flows and channel flows at various Reynolds numbers.
对于典型的壁面边界流动中整个湍流层的平均速度剖面,目前尚无令人满意的模型来解释。本文基于最近提出的流体流动动力学的随机表示,提出了一种适用于壁面边界湍流流动的平均速度剖面表达式。这种原始方法称为位置不确定性建模,它以严格的方式引入了一个推广涡粘性假设的亚网格项和一个由湍流不均匀性引起的涡旋诱导平流项。后一项为粘性底层和湍流底层之间的过渡区提供了一个理论基础扎实的模型。还给出了粘性区内小尺度速度分量的表达式。针对不同雷诺数下的湍流边界层流动、管道流动和槽道流动,提供了结果的数值评估。