Biofluid Simulation and Modeling, Theoretische Physik VI, Universität Bayreuth, Universitätsstrasse 30, Bayreuth, Germany.
Phys Rev E. 2019 Jun;99(6-1):062418. doi: 10.1103/PhysRevE.99.062418.
Active gel theory has recently been very successful in describing biologically active materials such as actin filaments or moving bacteria in temporally fixed and simple geometries such as cubes or spheres. Here we develop a computational algorithm to compute the dynamic evolution of an arbitrarily shaped, deformable thin membrane of active material embedded in a three-dimensional flowing liquid. For this, our algorithm combines active gel theory with the classical theory of thin elastic shells. To compute the actual forces resulting from active stresses, we apply a parabolic fitting procedure to the triangulated membrane surface. Active forces are then dynamically coupled via an immersed-boundary method to the surrounding fluid whose dynamics can be solved by any standard, e.g., Lattice-Boltzmann, flow solver. We validate our algorithm using the Green's functions of Berthoumieux et al. [New J. Phys. 16, 065005 (2014)10.1088/1367-2630/16/6/065005] for an active cylindrical membrane subjected (i) to a locally increased active stress and (ii) to a homogeneous active stress. For the latter scenario, we predict in addition a nonaxisymmetric instability. We highlight the versatility of our method by analyzing the flow field inside an actively deforming cell embedded in external shear flow. Further applications may be cytoplasmic streaming or active membranes in blood flows.
活性凝胶理论最近在描述生物活性材料方面非常成功,例如肌动蛋白丝或在立方体或球体等时间固定和简单几何形状中移动的细菌。在这里,我们开发了一种计算算法来计算嵌入在三维流动液体中的任意形状、可变形的活性材料薄膜的动态演化。为此,我们的算法将活性凝胶理论与薄弹性壳的经典理论相结合。为了计算来自活性应力的实际力,我们对三角形膜表面应用抛物线拟合程序。然后通过浸入边界法将活性力动态耦合到周围的流体中,其动力学可以通过任何标准(例如,格子玻尔兹曼)求解器来解决。我们使用 Berthoumieux 等人的格林函数[New J. Phys. 16, 065005 (2014)10.1088/1367-2630/16/6/065005]来验证我们的算法,用于受(i)局部增加的活性应力和(ii)均匀活性应力作用的活性圆柱形膜。对于后一种情况,我们还预测了一种非轴对称不稳定性。我们通过分析嵌入外部剪切流中的主动变形细胞内的流场来突出我们方法的多功能性。进一步的应用可能是细胞质流动或血流中的活性膜。