Suppr超能文献

多点 5D 流心血管磁共振 - 加速心脏和呼吸运动分辨率的平均速度和湍流速度映射。

Multipoint 5D flow cardiovascular magnetic resonance - accelerated cardiac- and respiratory-motion resolved mapping of mean and turbulent velocities.

机构信息

Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35 8092, Zurich, Switzerland.

出版信息

J Cardiovasc Magn Reson. 2019 Jul 22;21(1):42. doi: 10.1186/s12968-019-0549-0.

Abstract

BACKGROUND

Volumetric quantification of mean and fluctuating velocity components of transient and turbulent flows promises a comprehensive characterization of valvular and aortic flow characteristics. Data acquisition using standard navigator-gated 4D Flow cardiovascular magnetic resonance (CMR) is time-consuming and actual scan times depend on the breathing pattern of the subject, limiting the applicability of the method in a clinical setting. We sought to develop a 5D Flow CMR framework which combines undersampled data acquisition including multipoint velocity encoding with low-rank image reconstruction to provide cardiac- and respiratory-motion resolved assessment of velocity maps and turbulent kinetic energy in fixed scan times.

METHODS

Data acquisition and data-driven motion state detection was performed using an undersampled Cartesian tiny Golden angle approach. Locally low-rank (LLR) reconstruction was implemented to exploit correlations among heart phases and respiratory motion states. To ensure accurate quantification of mean and turbulent velocities, a multipoint encoding scheme with two velocity encodings per direction was incorporated. Velocity-vector fields and turbulent kinetic energy (TKE) were obtained using a Bayesian approach maximizing the posterior probability given the measured data. The scan time of 5D Flow CMR was set to 4 min. 5D Flow CMR with acceleration factors of 19 .0 ± 0.21 (mean ± std) and velocity encodings (VENC) of 0.5 m/s and 1.5 m/s per axis was compared to navigator-gated 2x SENSE accelerated 4D Flow CMR with VENC = 1.5 m/s in 9 subjects. Peak velocities and peak flow were compared and magnitude images, velocity and TKE maps were assessed.

RESULTS

While net scan time of 5D Flow CMR was 4 min independent of individual breathing patterns, the scan times of the standard 4D Flow CMR protocol varied depending on the actual navigator gating efficiency and were 17.8 ± 3.9 min on average. Velocity vector fields derived from 5D Flow CMR in the end-expiratory state agreed well with data obtained from the navigated 4D protocol (normalized root-mean-square error 8.9 ± 2.1%). On average, peak velocities assessed with 5D Flow CMR were higher than for the 4D protocol (3.1 ± 4.4%).

CONCLUSIONS

Respiratory-motion resolved multipoint 5D Flow CMR allows mapping of mean and turbulent velocities in the aorta in 4 min.

摘要

背景

对瞬态和湍流的平均速度分量和脉动速度分量进行容积量化,有望全面描述瓣膜和主动脉的流动特性。使用标准导航门控 4D Flow 心血管磁共振(CMR)进行数据采集既耗时又费力,实际扫描时间取决于受试者的呼吸模式,从而限制了该方法在临床环境中的适用性。我们试图开发一种 5D Flow CMR 框架,该框架结合了欠采样数据采集,包括多点速度编码和低秩图像重建,以便在固定扫描时间内提供心脏和呼吸运动分辨的速度图和湍流动能耗散率评估。

方法

使用欠采样笛卡尔小金角方法进行数据采集和数据驱动运动状态检测。局部低秩(LLR)重建用于利用心脏相位和呼吸运动状态之间的相关性。为了确保准确量化平均速度和脉动速度,采用了每方向两个速度编码的多点编码方案。使用贝叶斯方法获得速度矢量场和湍流动能耗散率(TKE),该方法基于测量数据最大化后验概率。5D Flow CMR 的扫描时间设置为 4 分钟。将加速因子为 19.0±0.21(平均值±标准差)和每个轴的速度编码(VENC)为 0.5 m/s 和 1.5 m/s 的 5D Flow CMR 与加速因子为 2x SENSE 的导航门控 4D Flow CMR 进行比较,后者的 VENC 为 1.5 m/s,共 9 名受试者。比较峰值速度和峰值流量,并评估幅度图像、速度和 TKE 图。

结果

尽管 5D Flow CMR 的净扫描时间为 4 分钟,与个体呼吸模式无关,但标准 4D Flow CMR 协议的扫描时间取决于实际导航门控效率,平均为 17.8±3.9 分钟。在呼气末状态下,从 5D Flow CMR 获得的速度矢量场与从导航 4D 协议获得的数据吻合良好(归一化均方根误差为 8.9±2.1%)。平均而言,5D Flow CMR 评估的峰值速度高于 4D 协议(3.1±4.4%)。

结论

呼吸运动分辨的多点 5D Flow CMR 可在 4 分钟内绘制主动脉的平均速度和脉动速度图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e907/6647085/655ed7f8837a/12968_2019_549_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验