Schaack Sofiane, Ranieri Umbertoluca, Depondt Philippe, Gaal Richard, Kuhs Werner F, Gillet Philippe, Finocchi Fabio, Bove Livia E
Institut des Nanosciences de Paris, Sorbonne Université, CNRS UMR 7588, 75005 Paris, France.
Institut Laue-Langevin, 38042 Grenoble, Cedex 9, France.
Proc Natl Acad Sci U S A. 2019 Aug 13;116(33):16204-16209. doi: 10.1073/pnas.1904911116. Epub 2019 Jul 22.
Gas hydrates consist of hydrogen-bonded water frameworks enclosing guest gas molecules and have been the focus of intense research for almost 40 y, both for their fundamental role in the understanding of hydrophobic interactions and for gas storage and energy-related applications. The stable structure of methane hydrate above 2 GPa, where CH molecules are located within HO or DO channels, is referred to as methane hydrate III (MH-III). The stability limit of MH-III and the existence of a new high-pressure phase above 40 to 50 GPa, although recently conjectured, remain unsolved to date. We report evidence for a further high-pressure, room-temperature phase of the CH-DO hydrate, based on Raman spectroscopy in diamond anvil cell and ab initio molecular dynamics simulations including nuclear quantum effects. Our results reveal that a methane hydrate IV (MH-IV) structure, where the DO network is isomorphic with ice I, forms at ∼40 GPa and remains stable up to 150 GPa at least. Our proposed MH-IV structure is fully consistent with previous unresolved X-ray diffraction patterns at 55 GPa [T. Tanaka , 139, 104701 (2013)]. The MH-III → MH-IV transition mechanism, as suggested by the simulations, is complex. The MH-IV structure, where methane molecules intercalate the tetrahedral network of hexagonal ice, represents the highest-pressure gas hydrate known up to now. Repulsive interactions between methane and water dominate at the very high pressure probed here and the tetrahedral topology outperforms other possible arrangements in terms of space filling.
气体水合物由包围客体气体分子的氢键水框架组成,近40年来一直是深入研究的焦点,这既是因为它们在理解疏水相互作用方面的基本作用,也是因为它们在气体储存和能源相关应用方面的作用。甲烷水合物在2 GPa以上的稳定结构,其中CH分子位于HO或DO通道内,被称为甲烷水合物III(MH-III)。尽管最近有人推测,但MH-III的稳定性极限以及40至50 GPa以上新高压相的存在至今仍未解决。我们基于金刚石对顶砧池中的拉曼光谱以及包括核量子效应的从头算分子动力学模拟,报告了CH-DO水合物进一步的高压室温相的证据。我们的结果表明,一种甲烷水合物IV(MH-IV)结构,其中DO网络与冰I同构,在约40 GPa形成,并且至少在150 GPa时仍保持稳定。我们提出的MH-IV结构与之前在55 GPa时未解决的X射线衍射图谱完全一致[T. Tanaka, 139, 104701 (2013)]。模拟结果表明,MH-III→MH-IV的转变机制很复杂。MH-IV结构中,甲烷分子插入六方冰的四面体网络,是目前已知的最高压力气体水合物。在这里探测的极高压力下,甲烷和水之间的排斥相互作用占主导,并且就空间填充而言,四面体拓扑结构优于其他可能的排列方式。