Bove Livia Eleonora, Gaal Richard, Raza Zamaan, Ludl Adriaan-Alexander, Klotz Stefan, Saitta Antonino Marco, Goncharov Alexander F, Gillet Philippe
Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS UMR 7590, Université Pierre et Marie Curie, F-75252 Paris, France; Institute of Condensed Matter Physics, Ecole Polytechnique Federal de Lausanne, CH-1015 Lausanne, Switzerland;
Institute of Condensed Matter Physics, Ecole Polytechnique Federal de Lausanne, CH-1015 Lausanne, Switzerland;
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8216-20. doi: 10.1073/pnas.1502438112. Epub 2015 Jun 22.
The richness of the phase diagram of water reduces drastically at very high pressures where only two molecular phases, proton-disordered ice VII and proton-ordered ice VIII, are known. Both phases transform to the centered hydrogen bond atomic phase ice X above about 60 GPa, i.e., at pressures experienced in the interior of large ice bodies in the universe, such as Saturn and Neptune, where nonmolecular ice is thought to be the most abundant phase of water. In this work, we investigate, by Raman spectroscopy up to megabar pressures and ab initio simulations, how the transformation of ice VII in ice X is affected by the presence of salt inclusions in the ice lattice. Considerable amounts of salt can be included in ice VII structure under pressure via rock-ice interaction at depth and processes occurring during planetary accretion. Our study reveals that the presence of salt hinders proton order and hydrogen bond symmetrization, and pushes ice VII to ice X transformation to higher and higher pressures as the concentration of salt is increased.
在极高压力下,水相图的丰富性急剧降低,此时仅已知两种分子相,即质子无序的冰VII和质子有序的冰VIII。在高于约60吉帕斯卡的压力下,这两种相都会转变为中心氢键原子相冰X,也就是说,在宇宙中大型冰体内部所经历的压力下,比如土星和海王星,在那里非分子冰被认为是水最丰富的相。在这项工作中,我们通过高达兆巴压力的拉曼光谱和从头算模拟,研究了冰晶格中盐包裹体的存在如何影响冰VII向冰X的转变。在压力作用下,通过深部的岩石 - 冰相互作用以及行星吸积过程中发生的过程,大量的盐可以被纳入冰VII结构中。我们的研究表明,盐的存在阻碍了质子有序化和氢键对称化,并且随着盐浓度的增加,将冰VII向冰X的转变推向越来越高的压力。